First

canion - RAMDAS M & RoBiN GARG

Cracking Digital VLSI Verification
INnterview

Cracking Digital VLSI Verification Interview
Interview Success

by
Ramdas Mozhikunnath & Robin Garg

First Edition : March 2016

Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty is implied. The authors shall have neither the
liability nor the responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book or other
resources accompanying this book .

This book is an independent work of the authors and is not endorsed by their
employers.

Foreword

Modern VLSI Designs find their place in every aspect of life. The complexity
of the design increased exponentially and so did the need for verifying the
design before it hits the market. The Verification methodologies matured
from simple directed simulations to complex UVMs, emulations, formal with
many more innovative solutions to emerge. The designs also moved from
dedicated functionality chips to versatile SOCs, thereby increasing the
complexity of design verification. The role of a validator in the design cycle
has been and shall continue to be very prominent. The latest studies from the
industry experts show that the average increase in the number of designers’
year over year is reducing while that of the verification engineers is steadily
increasing. The study further predicts verification engineer to designer ratio
to be 75:25 by the end of 2025 and by 2050, the ratio to 95:5 in the digital
design domain. A verification engineer needs to comprehend the

architecture, micro architecture, design details and in addition needs to have
a strong command over various verification methodologies, languages and
technologies. The first hurdle for an aspirant to enter a new company is a
successful interview which would have a wide spectrum of areas in the
verification domain.

This very book on cracking the interview is the first of its kind and
will be a great boon for all the aspirants . Interview is an art and science
and the authors took the utmost care to scientifically master the art of
succeeding a verification interview. This book equips the reader with all the
aspects what an interviewer would be looking for. Being an interviewer for
over a decade, I am impressed by the kind of questions discussed in this
book and I wish I had this book earlier. There are so many topics which I felt
that I should have known earlier that would have made the interviews
interesting. I have no doubt in recommending this book to all the aspirants
and even the interviewers in the domain to get a new and vivid perspective.
The gamut of the questions would benefit from a novice intern to the senior
expert executives. This book touches every aspect of the verification
engineer selection interview including technical and non-technical traits.

The authors of this book , Ramdas and Robin Garg have taken a
great care in dealing with all the characteristics of a successful verification
engineer. Ramdas has been known in the verification circles as one of the
finest experts in the domain. He has versatile experience in various top class
companies verifying the most complex designs and hosting the most followed
verification courses online. Robin Garg, with his innovative and enthusiastic
mind-set has conceived this philanthropic act of segregating the toughest of
the questions and bring out a book to help validation aspirants. I have
personally worked with both the authors and I am excited to share my
feelings as a foreword for this book. I wish the authors all the very best in
their endeavour to bring out this book.

Achutha Kiran Kumar, Formal Verification Lead, Intel

Co-Author, Formal Verification: An Essential Toolkit for Modern VLSI
Design

Verification is an art. It is one of the most challenging and exciting phase of

Microprocessor development lifecycle. For a predictable time to Market and
success of a VLSI product, Verification is the key.

If you are passionate to work in Digital VLSI Verification domain,
often wonder what it takes to land a job as Verification Engineer, and want
to know what skills are required to crack a VLSI Verification interview: this
book is a must-have for you ! Having a good understanding of VLSI
Design/Verification concepts and insights into VLSI interview process will
reduce your anxiety and boost confidence .

The authors : Ramdas M and Robin Garg are experts in
Microprocessor Verification with combined experience of more than two
decades. Through this book, they are giving a tool that can be used by
readers to expand their domain knowledge and be prepared for successful
interview. The book is well organized into chapters with detailed
descriptions and explanations for various questions, providing readers with
a guide to educate them. Book covers both technical and non-technical
aspects of the VLSI verification interview process. The authors have covered
various concepts in great detail : from basic design concepts to advanced
verification methodologies.

Using this book as a tool rather than a guide for your preparations
will assist you in your endeavors to have a successful career in the world of
VLSI Verification!

Pushkin R Pari, Senior Staff Engineer , Qualcomm

Dedication

To our Teachers, Parents, Mentors, Families, and Friends,
Thank You!

Feedback

As a reader of this book , you are our most important source of feedback and
hence we want to hear from you. You are a valuable critic and a reviewer for

us. We want to know what we have done right, what we could do better,
what all areas would you like to see us publish in, and any general feedback
or comments are also welcome. Please leave your ratings, comments, and
reviews. For any additional feedback, you can email us at
verif.excellence@gmail.com ”. Your feedback is highly appreciated!

Claim Your Free Gift

As Authors of this book, we want you to: get a thorough understanding of
various verification concepts, be successful in all your learning efforts, and
have a good career in the Digital VLSI Verification domain. Hence, we have
decided to give away a valuable e-book: “ 5 Mini Verification Projects to
make your Learning Thorough ” for FREE. In this e-book, we take you
through five different project assignments. These assignments will enable
you to work on real verification problems, assist you in making your
learning thorough, and help you in preparations for a job interview. This free
e-book covers different aspects like: building Verification environment in
SystemVerilog/UVM, development of Verification Intellectual Property
(VIP), and implementation of SystemVerilog Assertions (SVA). Please refer
Closing Remarks section at the end of this book for link to free e-book!

About the Authors

Ramdas Mozhikunnath

Ramdas is an Expert Verification Engineer with a passion for continuous
learning. He has more than 15 years of experience in pre-silicon and post-
silicon verification of complex ASIC designs and Microprocessors. He is
presently working as a Senior Verification Engineer and Manager at Applied
Micro on verification of latest generation ARM server CPU designs. In his
career, Ramdas has worked at several top companies including Intel, IBM,
and many other start-ups that delivered successful verification projects. His
area of expertise include: microprocessor cores, caches, coherency and
memory sub-system microarchitecture, and verification. He has deep

understanding of Verification methodologies and programming languages
like SystemVerilog, C++, OVM, and UVM.

Ramdas believes in keeping technical skills on the cutting edge. Hence, he is
passionate about sharing knowledge in the field of Functional Verification
through online courses, offline sessions, and blogs on the website:
www.verificationexcellence.in_. During last two years, he has released three
verification courses on Udemy that have registered nearly 10K users, and
have received good feedback/reviews from several students and functional
verification engineers.

You can follow Ramdas here : LinkedIn || Twitter || Quora..

Robin Garg

Robin is an experienced semiconductor professional and a technology
enthusiast. He graduated with Electrical and Electronics Engineering degree
from BITS Pilani, India in the year 2011 and has been working in the field of
Digital VLSI Verification since then. Over the span of last five years, he has
worked for top semiconductor companies in India and UK, and has explored
various facets and dimensions of Digital VLSI Verification at Pre-Si,
Emulation and Post-Si levels.

On non-technical front: Robin is a Mentor, Volunteer, Runner and a wannabe
Blogger. He has been mentoring Engineering/STEM students in association
with various non-profit organizations, and has volunteered for numerous
social causes. He is a fitness freak and is also leading various fitness
initiatives for his Alma-mater: BITS Alumni Association.

You can follow Robin here: LinkedIn || Twitter || Quora .

Note : This book is an independent work of the authors and is not endorsed
by their employers.

Credits and Acknowledgements

Authors would like to thank following Leaders (in alphabetical order) for
taking time out of their busy schedules to share their personal views on:

http://www.verificationexcellence.in/
https://in.linkedin.com/in/mramdas
https://twitter.com/ramdas2m
https://www.quora.com/profile/Ramdas-Mozhikunnath
https://www.linkedin.com/in/robingarg89
https://twitter.com/robingarg89
https://www.quora.com/profile/Robin-Garg-2

“What do they look for while interviewing candidates and how do they
usually arrive at a decision if a candidate should be hired?”
1) Chaitanya Adapa, Engineering Manager, Intel
2) Durairaghavan Kasturirangan, Principal Engineer/Manager,
Qualcomm
3) Pradeep Salla, Technical Manager, Mentor Graphics
4) Roopesh Matayambath, Principal Engineer, Applied Micro

Authors would also like to thank following Technical Leaders (in
alphabetical order) for taking time out of their hectic schedules to provide
honest foreword/review on this book.
1) Achutha Kiran Kumar V, Formal Verification Lead, Intel. Co-
Author, Formal Verification: An Essential Toolkit for Modern VLSI
Design
2) Pushkin R Pari, Senior Staff Engineer, Qualcomm

Table of Contents

About the Authors

Preface

A Career in ASIC/SOC Design Verification
Introduction

Preparing for an Interview

Interview Process and L.atest Trends

How should a Candidate prepare for an Interview ?
General Tips/Best Known Methods
What I eaders look for while Interviewing Candidates ?

Interview of First Verification I.eader

Interview of Second Verification I.eader

Interview of Third Verification Leader

Interview of Fourth Verification I.eader

1.1 Number Systems , Arithmetic and Codes
1.2 Basic Gates
1.3 Combinational L.ogic Circuits

1.4 Sequential Circuits and State Machines
1.5 Other Miscellaneous Digital Design Questions
Chapter 2: Computer Architecture
Chapter 3: Programming Basics
3.1 Basic Programming Concepts
3.2 Object Oriented Programming Concepts
3.3 Programming questions
3.3.1 UNIX/Linux
3.3.2 Programming in C/C++
3.3.3 Programming in PERL
Chapter 4: Hardware Description L.anguages
4.1 Verilog
4.2 SystemVerilog
Chapter 5: Fundamentals of Verification
Chapter 6: Verification Methodologies
6.1 UVM (Universal Verification Methodology)
6.2 Formal Verification
6.3 Power and Clocking
6.4 Coverage
6.5 Assertions
Chapter 7: Version Control Systems
7.1 General
7.2 CVS
7.3 GIT
7.4 SVN
Chapter 8: I.ogical Reasoning/Puzzles
8.1 Related to Digital Logic

8.2 General Reasoning
8.3 Lateral Thinking

Chapter 9: Non Technical and Behavioral Questions

Closing Remarks

Preface

Digital VLSI Design Verification practices have evolved and they continue
to evolve rapidly. Historically, writing directed tests and simulating them
against a design was a laborious and time consuming process. With
exploding design complexity, verifying a design has become the most
critical task and is usually the longest pole in a project schedule. This is
driving many new innovations that can improve verification productivity.
Hardware Description Languages (HDL) have evolved to support more
Verification enabling constructs and new verification methodologies like:
constrained random verification, Coverage and Assertion based Verification
have become more popular. SystemVerilog language and Universal
Verification Methodology (UVM) have gained wider adoption for dynamic
simulations while Formal Verification continues to be used more and more
for static simulations.

Due to these developments, Interview methods and hiring processes have
also changed to look for the right candidate with relevant skills. Hence,
whether you are a new starter aspiring for a career in Digital VLSI
Verification, or a professional already working in this field, you need to have
strong fundamentals, and be nimble enough to embrace new technologies,
understand evolving methodologies, and adopt best practices.

Be it any field, working on new standards and methodologies is extremely
challenging if you are not thorough with basic principles and fundamentals.
And specifically in the field of Digital VLSI Verification, learning process is
bit convoluted as there are hardly any resources that intend to cover
combination of basic fundamentals, their application, and evolving
methodologies. Hence, people looking for a job in Digital VLSI Verification

field, often ask - " What all resources do I have at my disposal for Interview
Preparation? What all concepts do I need to brush up before an Interview?
What all books/papers should I refer to ?"

Keeping this problem statement in our mind, we thought of writing a book
that could act as a golden reference and provide one-stop-shop solution for
all these questions by covering various topics that apply to Digital VLSI
Verification Interviews: basic fundamentals, advanced concepts, evolving
methodologies, latest trends, aptitude problems, and behavioral questions.
Aim of this book is to help candidates test, brush-up, and hone basic
fundamental concepts through question and answer approach. As authors of
the book (with 20+ years of combined work experience in this domain), we
have tried our best to cover concepts which we feel are applicable to digital
VLSI verification domain through a good set of 500+ questions.

A Career in ASIC/SOC Design Verification

Quite often, I come across this question: What is the career path for an
ASIC verification engineer? It’s astounding to see the number of people
having doubts and queries regarding career in the field of ASIC/SOC Design
Verification. Even though this doubt is primarily surfaced by Students,
Recent College Graduates and Junior Engineers, the number of Senior
Engineers having this confusion is also equally significant. Hence, I thought
of sharing my perspective on this with all our readers.

I am working as an ASIC verification engineer for more than 16 years now,
and to be honest I had the same question in my mind in early stages of my
career. I was literally confused. But I had some great Mentors who guided
me and helped me with all my doubts and queries. I was lucky to have
people around me who shared their experiences and stories with me. They
motivated me and showed me the right path.

And as I look back, I see that I have learned a lot over the years. I have
worked on Verification of several complex design projects at different
companies with amazing technologies and with some of the best minds in

the world. I still continue to enjoy a career in Verification and here are my
inputs based on what I have experienced:

Over last several years, complexity of designs has increased and it continues
to increase. Verifying a design is always crucial, as any functional defect in
the manufactured chip is going to cost huge money in terms of a new tape
out and would present the potential risk of losing a design-win opportunity
in the market. My experience shows that project life-cycles are shrinking and
there are always bugs to be found in lesser time for every subsequent project.
Hence, new methodologies, processes, and innovations are critical and
would continue to remain important. Many people feel that innovation in
ASIC/SOC Design Verification is only limited to EDA tools. This is NOT
true. EDA tools facilitate lots of usage models, but in reality these usage
models are defined and applied by Verification Engineers and Architects.

Becoming an expert in Verification Domain is not an easy job. It involves
much more than just running a test. A successful ASIC verification engineer
should have good software programming skills, thorough understanding of
various verification concepts (for modelling testbenches/stimulus), sound
hardware/logic design reasoning skills (for understanding the internals of
design micro-architecture), and good critical thinking skills (that facilitate
understanding all aspects of a design and finding all the defects efficiently).

In today's SOC design world, the scope of an ASIC verification engineer has
increased from mere functional simulations to Formal Verification,
FPGA/prototype emulation, HW/SW Co-Verification, Performance
Verification, and many more. There are career opportunities in each of these
areas where you can deep-dive, build your expertise, and become a valuable
asset for a company.

With all that said, you can build a career starting from a beginner level
Verification Engineer to an Expert Verification Engineer who could be
respected, could influence people, and could contribute towards goals of a
company all the way from product definition, design architecture, SW
development, and even customer deployment and interactions. I have
personally seen some people doing this.

It’s always good to have a mentor who can help you with all your queries
and solve all your doubts regarding your career. Usually I try to have my

role models as my mentors. If you are working in an organization look for
the people who you think you would want to be like in next 5-10 years. Talk
to them about their career progression, how they reached there, and discuss
your career plans with them.

There can be different designations through this career path, and these
designations may vary from company to company, but that should be given
less importance. According to me, Learning should take preference. And like
any other field, becoming an expert is not an easy affair. You are the one
who need to put in all the hard-work to achieve success. There would be
difficulties, there would be obstacles, but you need to be strong and
motivated enough to move ahead. And, having clarity on different career
options available for VLSI Verification Engineers would definitely help!

All the Best!
- Ramdas M

Introduction

How should I prepare for an interview? What all topics do I need to know
before I turn up for an interview? What all concepts do I need to brush up?
What all resources do I have at my disposal for preparation? What does an
Interviewer expect in an Interview? These are few questions almost all
individuals ponder upon before an interview. Keeping these questions in our
minds, we decided to write a book that could act as a reference for
candidates preparing for Digital VLSI Verification Interviews. Purpose of
this book is NOT to list down all the questions that could be asked in an
interview and overload the readers with thousands of questions. Aim of this
book is to enable our readers practice and grasp important concepts that are
applicable to Digital VLSI Verification domain through Question and
Answer approach. Hence, while answering the questions in this book, we
have not restricted ourselves just to the answer. Wherever possible, we have
tried to explain underlying fundamentals and concepts.

This book consists of 500+ questions covering wide range of topics that test
fundamental concepts through problem statements (a common interview

practice which the authors have seen over last several years). These
questions are spread across nine sections and each section consists of
questions to help readers’ brush-up, test, and hone fundamental concepts that
form basis of Digital VLSI Verification. However, this book is NOT "just"
about technical concepts. Scope of this book goes beyond just the technical
part. It's true that strong technical skills are a must-have, but securing a job
is not "just" about technical skillset. Behavioral skills also form a critical
part of working culture of any company. Hence, this book consists of a
section on behavioral interview questions.

In addition to technical and behavioral part, this book touches upon a typical
interview process and gives a glimpse of latest interview trends. It also lists
some general tips and Best-Known-Methods to enable our readers follow
correct preparation approach from day-1 of their preparations. Knowing
what an Interviewer looks for in an interviewee is always an icing on the
cake as it helps a person prepare accordingly. Hence, we spoke to few
leaders in the semiconductor industry and asked their personal views on "
What do they look for while Interviewing candidates and how do they
usually arrive at a decision if a candidate should be hired? ”. These people
have been working in the industry from many-many years and they have
interviewed lots of candidates over past several years. Hear directly from
these leaders as to what they look for in candidates before hiring them.

In this Digital Era, where new technologies are evolving fast, a question-
bank can never be 100% complete. It is impossible to cover ALL the
concepts, however big the question-bank may be. Hence, to re-iterate: this
book is our sincere effort to help our readers brush-up, test, and hone various
fundamental concepts through questions which we feel are applicable to
Digital VLSI Verification.

We hope that you enjoy reading this book. We are open to your feedback.
Please let us know your valuable comments and reviews. Also, do not forget
to claim your free gift (as mentioned in "Your Free Gift" section). We wish
you all the best for your interview preparations!

. .
nur\ﬂr\v1ﬂr¢ -cr\“ ~ T““'f\w‘l“lf\"’.T

ricpdiiilyg 1UL dll 1HHILELVIEW

Interview Process and Latest Trends

Finding right candidate for a job opening is not an easy process. Each
company has its own matrix and criteria for evaluating candidates. In
general, Recent College Graduates are either hired as full time employees or
as interns through On-Campus University recruitment programmes. In some
countries, Graduate Fairs are also organized. Few VLSI companies conduct
off-campus recruitment drives as well for hiring new graduates. Graduate
hiring usually consists of a written test and/or resume screening, followed by
few rounds of technical interviews, and finally a behavioral interview. Few
companies conduct live online programming test as well.

On the other side, process of hiring experienced professionals is bit different.
Experienced people either apply directly through a company's website, or
through Employee Referral process. Some individuals and companies use
services provided by hiring consultants as well. Nowadays, LinkedIn is used
extensively by companies and hiring consultants to find suitable candidates
for various job roles. As part of hiring process, experienced professionals
usually submit their resumes and cover letters. Resume screening is followed
by a telephonic interview, few rounds of Face to Face technical interviews
(number of rounds may vary from company to company), and a behavioral
interview.

In recent times, some companies have added one new step where they send a
questionnaire to the Job Applicants, ask them to solve the questions, and
send back the questionnaire in 1-2 hours. This step is increasingly being
used by some companies as an additional step before a telephonic interview,
or as a replacement for telephonic interview. Questions in these
questionnaires typically checks for a candidate’s ability to think through a
real-life verification problem, define a verification strategy, and suggest a
best possible method to solve the problem. Applicants are sometimes also
asked to comment on pros and cons of using different verification
tools/methodologies.

Hence, looking at interview processes and latest trends, it is recommended to
have a LinkedIn profile. Active participation in various forums (where real-
life verification problems, latest verification trends, and verification
advancements are discussed) is also encouraged.

How should a Candidate prepare for an Interview ?

Nature and difficulty level of questions for Digital VLSI Verification
vacancies vary depending upon the experience of the candidate (interviewee)
and the Job requirement. In order to make things easier and less complicated
for our readers, we have followed a “Divide and Conquer” approach, where
we have divided interview questions into “Nine” categories. These nine
categories (described below) cover almost all the main topics which are
usually asked in a Digital VLSI verification job interview.

As we mentioned in the introduction section, we have tried our best to
answer questions in a way that would help readers understand basic
fundamentals, rather than just overloading them with thousands of questions.

Digital Electronics/Digital Logic : This forms very important part of any
Digital VLSI Verification Job Interview as this is the topic where most of the
engineering knowledge applies. Wide range of questions related to digital
logic may be asked. In this book, we have subdivided this section into
Number Systems, Arithmetic and Codes, Basic Circuits, Combinational
Logic Circuits, Sequential Circuits and State Machines, and have also listed
some miscellaneous Digital Design questions.

Computer Architecture: With VLSI designs trending towards System on
Chip (SOC) designs, understanding fundamentals of computer architecture
have gained a lot of importance for VLSI Design Verification. In this
section, we cover questions on processor architecture, memories, caches, and
instruction sets.

Programming Basics : Present day Design Verification job is visibly
becoming more and more software oriented and good programming skills
are necessary for any testbench development and/or Verification Intellectual
Property (VIP) development. This section test candidate’s programming
fundamentals through questions related to basic programming languages like
C/C++, Perl, Shell, OOP concepts (Object Oriented Programming), and
UNIX/Linux fundamentals.

Hardware Description Languages: Hardware Description Languages
(HDL) are special type of programming languages that are used to model
behavior of digital logic circuits independent of any underlying
implementation technology. In this section, we extensively discuss various
fundamentals and questions relating to Verilog and SystemVerilog which
forms a significant part of interview process.

Key Verification Concepts: This section consists of questions related to
fundamentals of Functional Verification and how candidate thinks through a
problem with a Verification mind-set. We list simple digital designs with
corresponding design specifications, and ask the reader to: define a
verification strategy, explain the steps to verify the design and how to
identify and ensure all scenarios are verified. Additionally, this section also
contains some commonly asked questions related to fundamentals of
Verification. A Recent College Graduate may not be asked a lot of questions
from this section, whereas this section may constitute a significant portion of
interview for a senior candidate. In an Interview, difficulty of this section
usually varies with the experience of the candidate.

Verification Methodologies: With plenty of tools and techniques available
for the Functional Verification process, it’s quite possible to deviate from the
focus-area and lose track. Also, without defining a correct verification
methodology, user might end up adding more complexity to the verification
process, rather than finding the efficient methodology. Hence, defining an
efficient methodology is part of verification planning phase. The Verification
methodology can include: Dynamic Simulation vs Formal Verification,
Assertion based Verification, Coverage methodology, Power Aware
Simulations, Performance Verification, and also UVM (Universal
Verification Methodology) for constrained random testbenches. This section

is organized into subsections that will help you understand each of these
methodologies separately.

Version Control Systems: Version Control Systems have been an integral
part of Software Engineering domain for a long-long time. But no w they are
popular in Hardware Engineering domain as well. With Hardware Designs
becoming complex, various new features getting integrated every quarter,
multiple folks working on the same database across different sites and
locations, version control systems have become indispensable. Hence, this
section touches upon basics of various Version Control Systems: CVS, GIT
and SVN.

Logical Reasoning/Aptitude: This section aims at testing aptitude and
logical problem solving skills. Sometimes, aptitude and programming
questions are combined and candidates are asked to solve a aptitude question
using a program. We have further divided questions in this section into three
categories: Related to Digital Logic, General Reasoning, and Lateral
Thinking.

Behavioral: This is an important part of any interview. Having strong
technical skills alone won’t suffice as you are usually expected to work as
part of a team. Behavioral skills form an important part of work culture of
any company and hence this section is usually taken very seriously by
recruiters. Performing great in this section with poor technical skills may not
fetch candidate a job but performing bad in this section can cost candidate a
job.

General Tips/Best Known Methods

Before we move onto our next section and start with technical interview
questions, it is very important to follow a correct approach from the time
(Day-1) you start preparing for an interview. We have grouped together few
tips and Best-Known-Methods that should be followed once you start
preparing for an interview. Here are some of them:

1) Be thorough on all the skills and projects you mention in your
resume. Interviewers do spend time figuring out if you actually know
what you claim to know.

2) Never add fake or frivolous data in your resume.

3) Itis recommended that Recent and New College Graduates brush-
up on their Engineering basics, especially all the projects and the thesis
(if applicable) they completed.

4) Avoid saying something like “I read this N number of years ago,
hence I don’t remember this”. If it’s there on your resume, you are
accountable for it. If you don’t remember it, remove it from your
resume.

5) Never try to trick the interviewer. They are smart.

6) Be Honest and forthright. If you don’t know answer to a question,
it’s better to say “Sorry, I don’t know this”, rather than trying to build a
wrong story.

7) Don’t be Nervous. Be Calm.

What Leaders look for while Interviewing
Candidates ?

One of the most important part for acing and cracking any interview is to
know what interviewers look for while hiring a candidate. Hence, for the
benefit of our readers, we thought of adding this unique and amazing
section. We spoke to few industry leaders to understand their thought
process and decode an interview from a recruiter’s perspective. So brace
yourselves, and enjoy reading candid views of few industry leaders on “
What do they look for while Interviewing candidates and how do they
usually arrive at a decision if a candidate should be hired? ”. Do spend
some time going through this section as it would give you a very good
overview on what skill sets and behaviors are quintessential.

Interview of First Verification Leader
Chaitanya Adapa, Engineering Manager, Intel

Q1. What do you look for in candidates while interviewing for Digital
VLSI verification roles at different levels (say beginner, junior, mid-
senior and senior levels)?

Beginner : Basic logic design, Fundamentals of Computer
Architecture, Basics of HDL (Verilog/SystemVerilog etc.), Problem Solving,
Ability to learn/apply and soft skills like team orientation, communication,
etc. Scripting, Software experience, validation knowledge and domain
knowledge (GPU, CPU etc.) are a plus. Since the candidate at this level may
not have any major experience to show the focus is on the aptitude and
attitude. The person should gel with the team he is going to join and also be
able to learn and apply his knowledge independently. We look for a growth
mind-set where the candidate is ready to learn.

Junior (2-3 years) : The above for beginner is the basic requirement
for Junior. On top of it we focus mainly on how well they understood the
projects they have worked on in the last year or so. They need to be clear on
what the project was, what their contributions were, how they see
themselves contributing to the previous Organization and also how
inquisitive are they to learn adjacent areas. The candidate should be able to
convince the interviewer on all the achievements listed in the resume as the
selection is based on resume. We require Validation experience for a junior.
In the interview we also assess the debug capability and scripting ability.
Software experience is a plus. The candidate can narrate situations where
he/she has demonstrated sound technical problem solving.

Mid-Senior (5-8 years) : The above for Junior is a basic
requirement for Mid-senior. At this stage in the career we will consider the
candidate for a Lead position. So the candidate should demonstrate Domain
expertise and concrete deliverables in Validation domain, which can include
meeting or beating timelines on critical projects, presenting in conferences,
patents, tools/flows/methodology etc. Should have planning and execution as
a strength. It is good for a candidate to be aware of Project Management at
this stage. Stakeholder Management also becomes important at this stage.
Can narrate examples of how well he/she was able to plan, execute, and
manage stakeholders. This involves identifying risks and finding ways to
mitigate them. The candidate should be able to deliver cleanly on any
challenge/problem in validation.

Senior (9-15 years) : The above for mid-senior is a basic require for
a Senior Validation Engineer. At this stage of the career the candidate is
expected to have significant impact on projects, timelines, design, validation
or even architecture. The candidate should start identifying the problems in
validation domain and propose ways to address this via design, validation
collateral, process, tool, methodology or resources. Innovation, Stakeholder
Management, Influencing and Negotiation become very important. The
candidate may be expected to manage or lead a team so Team building is
also critical.

Q2. How do you evaluate technical skills?

The interviews are usually 45 mins to 1 hr each with 4 or 5
interviews for mid-seniors. For seniors there may be multiple interviews
with multiple levels of Management. Up-to mid-seniors the interviews are
more on technical. The focus on Soft Skills and leadership questions
increase with the seniority.

There are questions on language syntax (System Verilog, C, C++,
Perl, and Python etc.), problem solving using validation techniques (BFMs,
checkers, coverage) and fundamental concepts (Boolean logic, OOP, digital
circuits, caches/memory, pipelining, etc.)

For coding the candidate could be asked to write code for a specific
sorting algorithm, demonstrate inheritance.

For Logic design solving Boolean logic expression, digital circuit
for solving a logic problem, Multi-Cycle-Path, latency reduction techniques
etc.

Q3. How do you evaluate behavioral skills?

There are multiple aspects of behavioral skills which are evaluated.
Some of them are Integrity, Honesty, Team orientation, Conflict resolution,
Negotiation, Stakeholder Management and others.

It is important for the candidate to be honest and sincere about the
responses. The interviewer for behavioral is experienced enough to figure
out any insincere comments.

Integrity is about being disciplined and professional when dealing
with deliverables, customers or tough situations. If the candidate is found to
make compromises or shortcuts at the cost of project, this will work against
the candidate. It is important to understand the importance of delivering to
what is assigned/committed.

If there is lack of experience in certain areas it is better to make it
clear to the interviewer. The candidate should not be found misrepresenting
experience or data during the interview.

Other aspect of behavioral is about how committed the candidate is
about the interview and if he/she will eventually join if the offer is extended.
The evaluation is done using situation based questions. The
candidate is requested to put him/her in a situation to determine the actions

that will be taken or opinion on the outcome.

Passion for the company is also a factor. A strong passion for the
company may show motivation for the candidate to put in extra effort at
work.

The reason to leave the previous company is also a key factor. The
reason to leave should be very convincing. If the candidate is not sure it will
show up in the interview.

Q4. What’s the decision process (behind the scenes) while deciding to
make an offer?

Technical feedback, relevant experience for the position and
behavioral feedback are considered.

Usually multiple candidates are evaluated so there is a comparison
done on the interview performance of candidates.

The one closest to the requirements will be selected.

Each candidate has a set of skills they possess for the role and a few
that they may lack. So the gap in skills is also a factor. Some skills are easy
to ramp-up during the job. Other skills are a must and carry more weightage
when deciding about the candidate.

Since there is a short time for the interviewer to evaluate the
candidate, it is important the candidate create an impression during the first
few minutes of the interview and carry forward the impression while

answering questions. This is found to influence the interviewer in most
cases.

In order to have a positive influence on interviewer it is important
the candidate prepares well on his resume, has a clear objective of what he
wants from a role, why he/she wants to join this company, why he is leaving
the previous company.

Ideally a candidate should not be a disgruntled employee as this may
indicate the same may repeat with the new company too. So the reason for
leaving the previous company is very important in establishing the positive
attitude of the candidate.

Q5. According to you, what are the must have skills (both technical and
behavioral) for a Digital VLSI verification role?

Technical :: Logic Design, Validation, Computer Architecture, Software,
Domain knowledge (GPU/CPU/Server/IOT etc.), Debug capability,
Scripting, Methodology/tools/flows (SystemVerilog, Verilog etc.),
Participation in Conferences, etc.

Soft-skills :: Stakeholder Management, Team Orientation, Leadership,
Project Management, Negotiation, Team building, Innovation,
Collaboration, etc .

Q6. If T have to ask you your favorite interview question, what would it
be?

1. Why do you prefer the company you are interviewing at?

2. This will open up a discussion that can help evaluate the candidate on
the seriousness for the role, commitment to the job and any insecurity
on his current job.

Q7. Intern conversion to full time employee. Parameters you consider
before conversion?

The parameters are similar - Technical, Experience in relevant domain and
soft skills.

However since there is opportunity to observe and train the intern
for much longer time the evaluation is a lot thorough.

The intern should have picked up key skills for the group he/she is
interning with, delivered to the tasks assigned to him/her, showed ability to
learn about the bigger picture for the project; able to work in a team,
developed a network within the group.

It is important the intern learn about opportunities from time to time
by meeting with the supervisor/L.ead/Manager.

When it comes to deciding between interns usually delivery to tasks
and maturity in domain plays a key role.

Q8. If you have an option to hire between: "Candidate with High
Aptitude" and "Candidate with Future Promise" - Which one would
you choose and why?

Ideally I would like both. But more often than not most of them
have either one or the other and not both.

In such cases I would choose a candidate with Future Promise. One
reason for this is Aptitude can be learnt but Attitude is difficult to learn or
develop. So I have a better chance of success with a candidate who has good
attitude, able to pick new areas and is willing to work hard towards his/her
growth.

I also clearly state to the candidate on the gaps in aptitude and the
reason for selection. This instils a lot of confidence in the candidate and also
states the gaps the candidate needs to fill on the job.

Interview of Second Verification Leader

Durairaghavan Kasturirangan, Principal Engineer/Manager,
Qualcomm

Q1. What do you look for in candidates while interviewing for Digital
VLSI verification roles at different levels (say beginner, junior, mid-
senior and senior levels)?

Beginner/Junior

1.

2.

Digital design knowledge — focus more on problem solving than
programming skills.

Problem solving — Give a problem/puzzle to solve in stipulated time.
Ask the person to explain the approach. Weightage is given to the
approach as much as to the solution.

. Communication — Clarity in communicating than testing the language

skills. This is absolutely important because as verification engineers
we may have to communicate an issue/bug over an e-mail/bug report
or through a meeting across many geos and it’s imperative the person
can say what he thinks, not minding the language semantics.
Sometimes I draw a simple block diagram with few modules like CPU,
memory, or any known peripheral and write some specs on how all
this works. Will ask the person to come up with:

a. 5 simple test plan items covering the given spec.

b. 5 medium complexity Test Plan items.

c. 2 corner case line items (typically timing sensitive paths)

Mid senior/Senior

1.

All of the above plus go in depth on resume for the projects the person

has owned. This is to ensure how much in-depth the person knows on
what he/she did.

. Pick 1 or 2 of the projects and ask some abstract questions to

understand how much of big picture a person understands or has
learnt. For Ex: understand what his product does, what’s the market,
who are the market leaders.

. Give a problem statement and ask the person to come up with a

complete verification TB with HLTP (High Level TP). In this process,
candidates’ breadth knowledge on verification can be tested.

Q2. How do you evaluate technical skills?

Approach to the question asked will be given high weightage. From the
clarifying questions he/she asks, interviewer can access the person’s
understanding ability. This is the most important facet since verification is
all about not believing, rather not assuming anything.

Q3. How do you evaluate behavioral skills?

Two important behavioral traits absolutely important for Verification
engineers:

1. Communication (written/verbal) and listening skills — These can be
evaluated during the interview process. Making a person go to
whiteboard will gauge the person’s confidence in his subject and also
we can measure how well he communicates what he thinks.

2. If the person jumps to conclusion fast for a question asked by you, he
is not going to be a good verification engineer according to me.
Instead he has to ask lot of clarifying questions, not assume anything
and then go ahead with the problem solving.

Q4. According to you, what are the must have skills (both technical and
behavioral) for a Digital VLSI verification role?

Same as the ones mentioned in Questions 2 and 3.

Q5. Intern conversion to full time employee. Parameters you consider
before conversion?

1. The obvious one, How well the intern does the task assigned?
2. How well he/she works with the team?

3. Is the intern showing eagerness to learn new things?

4. How the intern adheres to the timeline?

5. And last but not the least, integrity of intern.

Q6. If you have an option to hire between: "Candidate with High
Aptitude" and "Candidate with Future Promise" - Which one would
you choose and why?

Depending on the need, I would need a mix of both.

Interview of Third Verification Leader
Pradeep Salla, Technical Manager, Mentor Graphics

Q1. What do you look for in candidates while interviewing for Digital
VLSI verification roles at different levels (say beginner, junior, mid-
senior and senior levels)?

The primary criterion is to see if the candidate fits the current job
requirement. The common denominators across all levels are learning
ability, problem solving skills, soft skills and technical competence.

Q2. How do you evaluate technical skills?

The technical skills are evaluated using a set of 3 — 4 technical interviews
where the interviewers test the following:

1) Generic VLSI and ASIC Verification skills

2) Language skills such as Verilog, VHDL, SystemVerilog

3) Methodologies like UVM.

4) Contribution to previous projects

Q3. How do you evaluate behavioral skills?

In addition to the technical interviews, we seek help from HR for
behavioural skills. Also, while we interview for Application Engineering
role, behavioural skills are very important and we consider the following
during the interview:

1) Body language
2) Communication skills
3) Clarity in communication

Q4. What’s the decision process (behind the scenes) while deciding to
make an offer?

Get feedback from all the technical interviewers and HR and consolidate
their individual ratings and we consider the potential fit of the candidate for
the role.

Q5. According to you, what are the must have skills (both technical and
behavioral) for a Digital VLSI verification role?

1) Basics of VLSI

2) Digital Logic

3) Verilog/VHDL

4) SystemVerilog

5 C

6) Problem Solving/Debug skills
7) Good Communication skills
8) Team Player

Q6. If I have to ask you your favorite interview question, what would it
be?

Convert a 2:1 Mux into NAND/NOR gate. This is good and a basic question
to get started on the technical questions.

Q7. Intern conversion to full time employee. Parameters you consider

before conversion?

We don’t hire interns at Mentor Graphics Sales team in India.

Q8. If you have an option to hire between: "Candidate with High
Aptitude" and "Candidate with Future Promise" - Which one would
you choose and why?

It would depend on the need of the hour before we decide. We always look
for future stars.

Q9. What will be one key message to people aspiring for great career
in verification industry?

Methodology is just not sufficient, what you need is domain expertise to
be successful in the verification industry.

Technical Skills + Domain Expertise = Success in Verification
industry

Interview of Fourth Verification Leader
Roopesh Matayambath, Principal Engineer, Applied Micro

Q1. What do you look for in candidates while interviewing for Digital
VLSI verification roles at different levels (say beginner, junior, mid-
senior and senior levels)?

Beginner : Digital Electronics Knowledge, Problem solving
skills, and coding skills.

Junior/Mid-Senior : All the points mentioned above for
Beginner. On top of that, challenges they came across in their previous
projects and the solutions they applied. Lots of questions on verification
methodologies and verification languages they have used (For Example:
OVM, UVM and SV etc.)

Senior : All the things mentioned above for Junior/Mid-Senior.
Additionally, probe on the ability to mentor juniors and skills on leading
a team.

Q2. How do you evaluate technical skills?

I provide a design unit and ask them to come up with various test
scenarios to verify that unit. Also, I ask general verification questions
(For Example: verification of an async FIFO)

Q3. How do you evaluate behavioral skills?

I observe the way a candidate approaches conflicting questions,
candidate’s body language and general attitude. Also, I ask general
behavioral interview questions like: “What steps would you take if there
is a conflict in the team?”

Q4. What’s the decision process (behind the scenes) while deciding to
make an offer?

Key thing should be to evaluate what exactly the new candidate brings
on to the table and how much would it be useful for the organisation.
Cost to the company for a candidate can also be taken into
consideration.

Q5. According to you, what are the must have skills (both technical and
behavioral) for a Digital VLSI verification role?

Good Analytical skills, Debugging and Problem solving skills, Patience
and Learning skills, and skills to Adapt to different requirements.

Q6. If I have to ask you your favorite interview question, what would it
be?

What are the different challenges in functional verification?

Q7. Intern conversion to full time employee. Parameters you consider
before conversion?

How fast a candidate can learn new things? What are the candidate’s
immediate goals and would the candidate be going to stay with the
organisation for a longer duration.

Q8. If you have an option to hire between: "Candidate with High
Aptitude" and "Candidate with Future Promise" - Which one would
you choose and why?

Candidate with future promise, because it is always important to look for
the future needs of the person and also what is the expectation from this
person of the organisation in the future.

Q9. What will be one key message to people aspiring for great career
in verification industry?

Keep on developing and improving debugging skills because this is the area
where most of the time is being spent during the process of verification.

Chapter 1: Digital Logic Design

Understanding the fundamentals of Digital logic design is an essential skill
for performing any job in the VLSI industry. Hence, irrespective of whether
the interview is for an ASIC design job, or verification job, or any backend
design or layout job, questions that test logic design skills are an important
part of the interview. Hence, this is the most fundamental and most
important topic for securing a job in VLSI industry. This section lists down
some of the most commonly asked questions in the interviews with answers
and detailed explanation of the concepts. Once you master these concepts
through these questions, same concepts and logical approach could be used
for related questions.

1.1 Number Systems , Arithmetic and Codes

Number systems form the basis for conveying and quantifying information
in a digital system. This section consists of questions related to common
number systems like decimal, binary, octal and hexadecimal (hex),
arithmetic operations in different number systems, conversion between
different representations etc.

1. Convert following decimal numbers in signed binary, octal
and hexadecimal numbers using minimum possible number
of bits.

a) 17 b) -17

A decimal number consists of decimal digits (0 to 9), a binary number
consists of binary digits (0, 1), octal number consists of octal digits (0 to 7),
and a hexadecimal number consists of 16 digits (0to 9, A, B, C, D, E and F
).
A decimal digit can be converted to any other base by following three simple
steps mentioned below:
e Divide the decimal number by the base (i.e. 2 for binary, 8 for
octal, and 16 for Hex)

e The remainder will form the lowest order digit in the converted

number system.

e Repeat steps 1 and 2 mentioned above until no divisor remains
The MSB represents “sign” information. For negative numbers, MSB is one
and for positive numbers, MSB is zero.

Using the steps mentioned above, we will get a binary value of 10001, octal
value of 21 and hexadecimal value of 0x11 for decimal number 17. Since
this question specifically asks for signed representation and as we have seen
that positive numbers have MSB as 0, binary number “10001” represents a
negative number in signed representation. Hence, we can say that 5 bits are
insufficient to represent +17 in signed binary number system (as a matter of
fact, 5 bits can represent decimal numbers from -16 to 15 only). Therefore,
we need 6 bits to represent +17. This means that we need to append one
more “0 “ at the beginning of 10001. This would give us 010001 (a 6 bit
number), as binary representation of +17.

One easy way to convert a positive number to a negative number in binary
representation is to take 1’s compliment and add 1 (which is same as 2’s
compliment).

Also, once we have a binary number, we can easily convert it into octal
(grouping three binary bits starting from LSB) or hexadecimal (grouping
four binary bits starting from LSB)

Therefore for -17,
e 1’s compliment of +17 (010001) would be “1011107,
e And adding 1 to above number would give us “101111”

a) Based on this, the decimal number 17 would be represented as:
Binary = 010001 , Octal = 21 , Hexadecimal = 0x11

b) And decimal number -17 would be represented as:
Binary = 101111, Octal = 57 , Hexadecimal = 0x2f

2. What is the decimal equivalent of hex number 0x3A?

To convert a number from a non-decimal base to a decimal base, following
steps are required:
e Start from the least significant digit, and move towards most
significant digit.
e Multiply each digit with “<base> to the power of that <bit
position>", i.e. <base> <bitposition>
e Sum the results over each digit.
Therefore: 0x3A = [0xA *16°]+ [0x3 *16']=[10*1 + 3*16] = 58

3. What is Gray code and what are some of the benefits of using
Gray code over Binary code?

A Gray code is a binary number system in which two successive values
differ only in one bit. It is also known as reflected binary code
Following table shows the Gray and Binary code for values from 0 to 7

Decimal Binary Gray
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

In Binary code, a transition between two values could have transition on
more than two bits and this could sometimes lead to ambiguity if different
bits take different time to transition. For example: transitioning from 3 to 4
in binary (011 to 100) requires all the bits to toggle. This can lead to some
intermediate values if say the three bits have different switching time.
Whereas in Gray code, since only one bit changing any time, there is no
possibility of any such ambiguity.

One more advantage of using Gray code is: since fewer bits are toggling in
Gray code, a design using Gray code would consume less power compared
to one using a binary code.

4. What is a parity bit and how is it computed?

A parity bit is a bit which is added at the end of the string of a binary code,
and it indicates whether the number of bits having a value “one” in the string
is even or odd. Accordingly, there are two variants of parity code - even
parity and odd parity.

To compute parity bit, the total number of bits having a value “one” in a
binary code is counted. If number of “ones” are odd and if we use an even
parity, then the parity bit is set to 1 so that the total number of ones including
parity bit counts to an even number. If number of “ones” are odd and if we
P — it N] 1 ¢
including parity bit counts to an odd number.
Parity bit is computed by taking XOR of all the bits in the binary string.
Parity bit is used as the simplest form of error detecting code.

5. For a given binary string: 111001, compute the proper odd
parity bit.

The given binary string: 111001, has four “1’s”. Using an odd parity, the
total number of 1’s in the binary string including the parity bit needs to be
odd. Hence, the odd parity bit for this string will be 1 .

6. What are 1's complement and 2's complement? Where are
they used?

If all bits in a binary number are inverted by changing each 1 to 0 and each 0
to 1, the resulting binary number is called the 1’s complement.
For example: The one’s complement of a binary number 110010 is 001101

The 2’s complement of a binary number is obtained by adding a 1 to the
one’s complement of the number.

For example: The two’s complement of a binary number 110010 is
001101+1 =001110

The two’s complement of a number is used to represent signed binary
numbers. It is also used for subtraction of binary numbers. The one’s
complement is an intermediate step to get to two’s complement.

7. What is a BCD code and how is it different from binary
code? What will be the BCD and binary code for decimal

number 27?

BCD is Binary coded decimal and is a four bit binary code that can be used
to represent any decimal digit (from O to 9). A binary code is a binary
representation of the decimal number, and the number of bits needed for a
binary code would depend on the decimal number. For decimal numbers 0 to
9, both BCD and binary code would be same.

A number 27 can be represented in BCD by using four bit code for both 2
and 7.

Hence, BCD for 27 will be 0010 0111 , while the binary code for 27 will
be 11011

8. Which of the following code can represent numbers,
characters, and special characters?

BCD

Gray

EBCDIC code

ASCII code

Alphanumeric code

P AN T

e) Alphanumeric code.

Alphanumeric code is a combination of alphabetic and numeric characters
and can be used for representing numbers as well as character(s)/special
character(s).

1.2 Basic Gates

9. Which of the following gates is called a universal gate and
why?

AND

NAND

OR

NOR

XOR

Pap o

A universal gate is a gate which can implement any Boolean function
without need to use any other gate type. The NAND and NOR gates are
universal gates.

10. How can you implement a two input AND, two input OR and
a single input NOT gate using two input NAND gates(s)?

If A and B are the two inputs of a NAND gate, then the output equation for a
NAND gate will be, Y = (A.B)’

1) NOT Gate : The NOT gate can be described with the output
equation as Y= (A)’. So, if inputs A and B of a NAND gate are
connected together to same input, then we get a NOT gate.

A —)D—?:A'

2) AND Gate : An AND gate is described by the output equation
Y= A.B and hence connecting a NOT gate to the output of NAND gate
will implement an AND gate.

D

3) OR Gate : OR gate can be described as Y=A+B = (A’)’ + (B’)’ =
(A’ B’)’ using De-Morgan’s law. Since A’ and B’ can be represented as
NOT gates, above equation can be represented as below which gives
an OR gate.

11. How can you implement a two input AND, two input OR and
a single input NOT gate using two input NOR gates(s)?

A NOR gate is described using the equation: Y = (A+B)’.

1) NOT Gate : A NOT gate is described using Y = A’. If both inputs
of a NOR gate are tied together Y = (A+A)’ = A’

2) AND Gate : An AND gate is described by equation: Y = A.B =
(A’)’.(B’)’ = (A’ + B’)’. Hence, we can use a NOR gate with inputs as
A’ and B’. A’ and B’ can be implemented using a NOT gate for A and
B as shown below.

3) OR Gate : OR gate is described by Y = A+B = ((A+B)’)’. Hence,
(A+B)’ can be implemented using a NOR gate and the inversion of
same can be done using a follow on NOT gate as shown below

o
B o

\ ——

7
ﬁ‘ 12.

How can you implement following gates using a 2:1 MUX?
a) Single Input NOT NOT AND

b) Two Input AND \ 0O — I

c¢) Two Input OR o —1 2 ._,l

d) Two Input NOR

e) Two Input NAND)
f) Two Input XOR " £

A multiplexer is a combinational logic that can multiplex two inputs onto a
single output lane using select lines. A 2:1 multiplexer will have a single
select input and based on the value (0 or 1), it would drive the output with
either of the inputs.

a) NOT Gate: A NOT can be implemented as shown below by
connecting the input of NOT gate to select line and the inputs tied to 1
and 0 as shown below.

b) AND Gate: An AND gate can be implemented using MUX as
shown below

ADB

c) OR Gate: OR gate can be implemented using a 2:1 MUX as
shown below.

m

d) NOR Gate: A NOR gate can be implemented using a combination of
OR gate and NOT gate from above.

e) NAND Gate: A NAND Gate can be implemented using a
combination of the AND gate and NOT gate from above.

f) XOR Gate: A XOR Gate can be implemented using a 2:1 MUX as
shown below. The zeroth input is connected to A and the 1 input is

connected to A’ (Use another MUX to implement NOT of A). The MUX
output will now be AB’ + A’B which is same as XOR gate .

13. What are typical uses of “XOR?” gates in data
communication?

An XOR gate is used in computation of error detection codes like parity,
CRC and ECC. It is also used in pseudo random number generators.

14. When can the output of a 3-input NAND gate be zero?
a) when at least one input is zero
b) when all inputs are zero
c) when at least one input is one
d) when all inputs are one

A NAND gate can get an output zero only when all inputs are 1. So, d) is
the right answer.

15. How can you design an inverter using a XOR gate?
An XOR gate is described using the equation Y = AB’ + A’B. If one of the

inputs is tied to 1 as shown below, then we get: Y =A.1’+ A’ 1=0+ A’ =
A’, which is a NOT gate or an inverter.

16.

How can you design a pass gate or a buffer using XOR gate?

A pass gate or a buffer passes the input as it is to the output. If A is the input
and Y is the output, this can be represented by Y=A. Hence, this can be
implemented using XOR gate by connecting one of the inputs to be always
zero as below: Y=0A+0’.A=0+1.A=A

17.

a)

What will be the output of following gates if one of the inputs
is unknown(x)? — A

a) ORga 6 - X ;—
b) AND gate O— O i -~ X
c¢) NOT gate)(_

d) XOR gate X

If one of the inputs of OR gate is x, then the output depends on

other input. If other input is one, the output of OR gate will be 1, and
for any other values, output will be x.

b) If one of the inputs of AND gate is x, then the output depends on
other input. If other input is zero, then the output of AND gate will be
zero and for any other values, output will be x.

c) If the input of NOT gate is x, output will also be x.

d) If one of inputs of XOR gate is x, output will also be x.

18. A bulb in a staircase has two switches, one switch being at
the ground floor and the other one at the first floor. The bulb
can be turned ON and also can be turned OFF by any one of
the switches irrespective of the state of the other switch.
Which gate does this logic resemble for the bulb turning on?

Let us take SO and S1 as the two switches. If already a switch is off (0), then
changing other switch to 1 should give ON=1. If already a switch is ON (1),
then changing other switch to 1 should turn off the bulb (OFF=1).
Accordingly, you can have following table representing how the ON/OFF
behaves based on switch.

SO S1 ON OFF

0O 0 0 1

0 1 1 0 (SOwasoff, S1=1 causes bulb to turn on)

1 0 1 0 (S1wasoff, SO=1 causes bulb to turn on)

1 1 0 1 (either SO/S1 was on and changing other switch to 1

causes bulb to be off)

Hence, the turning on of bulb behaves like an XOR gate.

1.3 Combinational I.ogic Circuits

19. What is the difference between Combinational and
Sequential circuits?

W - Wb
?W.f— ?f@u?ms Stite — ?&!7

A circuit whose output at any instant depends only on the inputs at the
present instant of time is called a combinational circuit. Hence, these circuits
do not contain any memory elements. Some examples of combinational
circuits are Half Adder, Full Adder, Multiplexer, Decoder etc.

A circuit whose output at any instant depends both on the inputs at the
present instant of time as well as output values from the past is called a
sequential circuit. These circuits hence have some form of memory elements
to remember the past values. Some examples of sequential circuit are Flip-
flops, Registers, Counters, etc.

20. What is the difference between a Multiplexer and
Demultiplexer?

An n to 1 multiplexer, or MUX, for short, is a device that allows you to pick
one of n inputs and direct it to a single output.

Demultiplexers (or DeMUX for short) are basically multiplexers where the
inputs and outputs are reversed. For a 1 to n DeMUX, you have a single
input, and n outputs to choose for directing the input.

21. Design a 4:1 MUX using 2:1 multiplexers?
A 4:1 MUX can be designed using 2:1 MUX as shown below. Following is

the truth table for a 4:1 MUX (S1, SO are the select lines and 10-13 are the 4
input lines while Y is the output).

51 50 Y
0 0 10
0 1 11
1 0 12
1 1 13

So you can see that S1 can be used to select one half of the inputs and within

each half SO can be used to select one of the two inputs within that
half.

50

s0

22. How many 2:1 multiplexers will you need to designa 2 " :1
MUX?

As we saw in previous question, a 4:1 MUX can be implemented using three
2:1 MUXes. This includes one MUX to select the two halves and two
MUXes to select between two inputs of each half of inputs.

If we extend this concept to a 8:1 MUX, we will need one 2:1 MUX to select
between two halves (4 inputs each) and then we will need two 4:1 MUXes
(each requiring three 2:1 MUXes).

Hence, fora “2 " :1” MUX, we will require one 2:1 MUX and two “n:1”
MUXes. And if we apply the same logic for n:1 MUX and further, we will
get the following equation which is a geometric progression.

Total number of MUXes needed=1+2+4+8+ ..., +20D=2n_1

23. What is the difference between an encoder and a decoder?

A decoder is a combinational circuit that decodes a given number of inputs
into a given number of output signals.

For example: A 3 to 8 decoder will decode a 3 bit input signal to an 8 bit
output signal as follows

000 => Out0

001 => Outl

010 => Out2

011 => Out3

100 => Out4

101 => Out5

110 => Out6

111 => Out7

And encoder is a combinational circuit that does the other way around. It
takes a given number of n inputs and encodes them into a smaller number of
outputs

For example: An 8 to 3 encoder could do exactly reverse of above 3 to 8
decoder. There can be 8 inputs and each of them can be encoded into a 3 bit
binary output.

24. How is an encoder different from a multiplexer?
An encoder is a similar to a multiplexer with the difference that a

multiplexer only has a single output to which n inputs are multiplexed while
an encoder normally has 2 ™ inputs (or less) and n outputs.

25. What is a priority encoder and how is it different from a
simple encoder?

A simple encoder is a circuit that converts a 2 " bit one-hot vector to an n-bit
output.

For example: a 4 to 2 simple encoder encodes as per following table. The
simple encoder expects the inputs to be one hot and if more than one input is
high, then the outputs becomes X.

4 to 2 Simple Encoder

Is |1, [1; |1 [0y | O

=== RO =

= | OO0 | 0|0
ID“ — D”IDMD
OO | = |0O|0
|0 |0 |~ | O
== | O|0O|x
= | O |= O | x

A priority encoder on the other hand encodes inputs with more than one bit
being high using a priority. For example: a 4 to 2 priority encoder will
encode a 4 bit input and if more than one bit is high, the MSB takes priority.
Hence, it can be represented as table shown below.

4 to 2 Priority Encoder

Is |l |1p |lg |07 | Og

=l E=N == -
b B S I B o I
> | = =0 O
= O
= = | O O |
= | O | = O X
e L R ==

26. What is a ring oscillator? What would be the frequency of a
ring oscillator implemented using three NOT gates if each

gate has a delay of 2 ps?

A ring oscillator is a device composed of an odd number of NOT gates
whose output oscillates between two voltage levels, representing true and
false. The NOT gates, or inverters, are attached in a chain and the output of
the last inverter is fed back into the first.

(2 Ps/oyche

If three NOT gates are connected in a chain, then it would take three times
the inverter delay for a value from input to transition to the output.
Therefore, for two transitions it takes 6 times inverter delay. Hence the clock
frequency will be 1/ [6*(inverter delay)]. For our present case, clock
frequency will be = 1/(6*2) THz = 1000/12 GHz = 83.33 GHz.

1.4 Sequential Circuits and State Machines

27. What is the difference between Synchronous and
Asynchronous circuits?

Sequential circuits can be of two types - Synchroenous circuits and
Asynchronous circuits.

Synchronous sequential circuits change their states and output values at
discrete instants of time, which are specified by the rising (transition from 0
to 1) or falling edge (transition from 1 to 0) of a clock signal. A simple

example is a flip-flop which stores a binary value and can change on an edge
of clock based on input values.

In Asynchronous sequential circuits, the transition from one state to another
is initiated by the change in the primary inputs without any external
synchronization like a clock edge. It can be considered as combinational
circuits with feedback loop. Because of the feedback among logic gates,
asynchronous sequential circuits may, at times, become unstable due to
transient conditions and are not used commonly. A simple example: RS
Latch.

28. Explain the concept of “Setup” and “Hold” times?
Setup time is the minimum amount of time during which data signal should
be stable before the clock makes a valid transition. Hold time is the
minimum amount of time during which data signal should be stable after the
clock makes a valid transition. clefs

29. What is meant by clock skew?

The difference in arrival times of the clock signa%y‘?&}%' flops which are
interacting with one another is referred to as clock skew

D———D1 Q1 Data Path D2 Q2——0Q

FF1 FF2
CLKA _ CLKB

QMHQ Delay

SYSCK

For example in the above diagram, the D input from first flip-flop
propagates through a combinational datapath circuit to second flip-flop . A
clock from a common source (SYSCK) is routed to both flip-flops , but

because of wire or routing delay, there could be a small difference when the

edges are seen on the two flip-flops . The difference of this time is known as
clock skew.

The clock skew is only important between two flip-flops where one flip-flop
output is being sampled by the second flip-flop .

30. For a given sequential circuit as shown below, assume that
both the flip flops have a clock to output delay = 10ns, setup
time=5ns and hold time=2ns. Also assume that the
combinatorial data path has a delay of 10ns. Calculate the
maximum frequency of CLKA that is possible for design to
operate correctly?

o— o1 G —p2 ad—a
FF1 FF2

CLKA '} o

For this sequential circuit to operate correctly, output of the first flip-flop
should propagate through the combinatorial data path and should be stable
for a minimum duration equal to the setup time of the second flip-flop before
the next clock edge.

If T . 4 is the clock period, T , is the clock to output delay, T . is the
propagation delay for the data path and T . is the set up time of flip flop,

then we have this conditionas T oy , 2T ¢+ T pp + T gp

Hence, the clock period in this example needs to be >= 10+10+5 = 25ns and
the max frequency will be 1/25ns = 40MHz. ~—

31. What is the difference between a flip-flop and a latch?

Latches and flip-flops are the basic elements for storing information. One
latch or flip-flop can store one bit of information.

The main difference between latches and flip-flops is that for latches, their
outputs are constantly affected by their inputs as long as the enable signal is
asserted. In other words, when the enable signal is high, the contents of
latches changes immediately when inputs changes.

Flip-flops, on the other hand, will change the contents only at the rising or
falling edge of the enable signal which is usually a clock signal. After the
rising or falling edge of the clock, the flip-flop content remains constant
even if the input changes.

32. What is a race condition? Where does it occur and how can
it be avoided?

When an output has an unexpected dependency on relative ordering or
timing of different events, a race condition occurs. With respect to Digital
Electronics and SystemVerilog, race conditions can be classified into two
types:

1) Hardware race condition

2) Simulation Induced race condition.

Hardware race condition : If we look at SR latch (NAND gate based)
below, if both the inputs are 1 (S=1 and R=1), Q and Q’ both would become
1 and then feedback into NAND gates. Now, if both S and R are
immediately changed to 0, Q and Q’ both would enter into a race condition
(value would start oscillating: 1 to 0, 0 to 1, 1 to 0, and so on...).

s

Q
— Q
R —

Hardware race condition can be avoided by proper design techniques. For
Example: In this case of SR latch, we can avoid race condition by having an
enable/control signal as shown below:

D
Q
C
Q
| R——

Simulation induced race condition : Look at the SystemVerilog code
below:
always (@(posedge clk or posedge reset)
if (reset) X1=0;// reset
else X1 = X2;
always (@(posedge clk or posedge reset)
if (reset) X2 =1 ;// reset
else X2 = X1;

SystemVerilog simulators don’t guarantee any execution order between
multiple always blocks. In above example, since we are using blocking
assignments, there can be a race condition and we can see different values of
X1 and X2 in multiple different simulations. This is a typical example of

what a race condition is. If the first always block gets executed before
second always block, we will see X1 and X2 to be 1. If the second always
block gets executed before first always block, we will see both X1 and X2 to
be zero.

There are many coding guidelines following which we can avoid simulation
induced race conditions. For Example: This particular race condition can be
avoided by using nonblocking assignments instead of blocking assignments.

33. Implement D flip-flop using 2:1 MUX.

Let us take the case of negative edge triggered D Flip-flop. A a negative
edge triggered D Flip-flop transfers the input (D) to the output at a negative
clock edge only. At all the other times, there is no change in the output (Q
retains its value). To implement this functionality using 2:1 MUX, we need
two 2:1 MUXes as shown in the figure below.

Here, one MUX has select line as CLK signal and the other MUX has select
line as CLK’ signal (inverted CLK). Now, when CLK is 1, select line of the
first MUX (one on the LHS) selects D (connected to i1), and D is thus
transferred to the output of first MUX (this output is further is fed-back to
the first MUX and is also connected to i1 of second MUX). Since, CLK’ is 0
when CLK is 1, D is not transferred to Q (as i0 is selected for second MUX).
Hence, till the time CLK stays 1, any change in D is reflected at the output
of first MUX but is not reflected at the output of second MUX as i0 is
selected for second MUX (which is nothing but Q as Q is connected to i0 for
second MUX). Now, when the CLK transition from 1 to 0, D is no longer
selected (i0 is active for first MUX) and the value of D which was present
just before the negative edge of the clock is transitioned to the output Q.

}JL E‘%}»

CLK

34. How can you convert a D Flip-flop to a T Flip-flop?

For converting any flip-flop (say D Flip-flop) to any other flip-flop (say T
Flip-flop), write down the excitation table of the target flip-flop behavior (T
flip-flop in this case) and implement a combinational logic which does the
conversion of inputs of T Flip-flop to correct inputs for D Flip-flop such that
together it behaves as a T flip-flop . Following diagram illustrates this.

Q
? D Flip-flop

A

CLK

Following table consists of excitation table of T Flip-flop (first 3 columns
below) and the last column shows the values of D that is needed for the
outputs Qn to change to Qn+1 .

/X7

[T/] an [[anél |) D
\ i
1 0 1 1
1 1 0 0
0 1 1 1

Looking at above table, we implement D as a function of T, Q(n), and
Q(n+1) using K-maps. This would give us: ID'=T.Qn" +1T7.Qn, which is an
XOR gate.

35. Convert a JK flip-flop to D Flip-flop.

Following the principle described in the above question, we identify the
combinational logic that is needed for conversion. Answer would be: J =D
and K =D’

36. What is difference between a synchronous counter and an
asynchronous counter?

A counter is a sequential circuit that counts in a cyclic sequence which can
be either counting up or counting down. Counters are implemented using a
number of flip flops and combinational logic that feeds output of one flip-
flop to another. There are two types of counters - synchronous and
asynchronous.

In synchronous counters, the clock inputs of all flip-flops are connected to a
common clock signal and hence all flip-flops changes synchronously.

In asynchronous counters, the clock input is connected only to the first flip-
flop and the output for first flip-flop is connected to the clock input of
second flip-flop and similarly every other flip-flop is clocked by the output
of previous flip-flop.

Some examples of synchronous counters are Ring counter and Johnson
counter while some examples for asynchronous counters are Up-Down
counters.

37. What is the difference between “Ripple Carry adder” and
“Carry Look-ahead adder”?

Ripple carry adders are slow adders because the inputs (A ;A , B,
....B) and carry-in’s (C ,C) ripple “leftwards” until the final Carry-
Out (C ;) and most significant bit of the Sum (i.e. S |) are generated. This
is because each carry bit is calculated along with the sum bit and each bit
must wait until the previous carry has been calculated in order to begin
calculation of its own sum bit and carry bit. This is represented by diagram
shown below.

Carry Look-ahead adders are fast adders as they reduce the time required
to calculate carry bits. It calculates carry bits before the sum bits and this
reduces wait time for calculating other significant bits of the sum. To
facilitate this operation, intermediate “Propagate” and “Generate” functions
are used, where Generate (G,) = A, B, and Propagate (P,)=A A B,
Generate function G ; produces 1 when there is a carry out from position i,
and propagate function P . is true when incoming carry is propagated. Hence,
Ci,=G,+P,C,

This is represented by diagram shown below.

N-Bit Ripple Carry Adder

A B,

i Ll

1-bitFull | ' 1-bit Full 1-bit Full

CCI'._.I-‘_. Adder [:n CS ATE' [:2 Adder
S'n 52 5‘1

N-Bit Carry L.ook-Ahead Adder

A, B, Ay B A, B,

. P

1-bit Full 1-bit Full L
Adder MEmmERE g Adder f Adder
"L L W
Sn S'J 5‘]
o | P M
P.G, C G, P, Gy G P, G, ¥
1 [1 1
oy i M-Bit Carry Look Ahead Adder
COUT

38. What is the longest path for N-bit ripple carry adder?

(2N+1) Gates.

To understand this better, think in terms of 1-bit and 2-bit ripple carry
adders.

For 1-bit ripple carry adder, longest path has 3 gates.

For 2-bit ripple carry adder, longest path has 5 gates.

39. What is the difference between synchronous and
asynchronous reset?

A Reset is synchronous when it is sampled on a clock edge. When reset is
synchronous, it is treated just like any other input signal which is also
sampled on clock edge.

A reset is asynchronous when reset can happen even without clock. The
reset gets the highest priority and can happen any time.

40. How many flip-flops are needed to implement a 32 bit
register?

Each flip-flop can save one bit of information. Hence to implement a 32 bit
register, we would need 32 flip-flops.

41. What is the difference between a Mealy and a Moore finite
state machine?

A Mealy Machine is a finite state machine whose output depends on the
present state as well as the present input.

A Moore Machine is a finite state machine whose output depends only on
the present state.

42. What is an Excitation table?

An excitation table shows the minimum inputs necessary to generate the
next state when the present state is known. For Example: Below are
Excitation Tables for D, T and JK Flip-flops.

The current state is identified by Q(t) while next state is Q(t+1).

Q(t) Q(t+1) D Operation
0 0 0 Reset
0 1 1 Set
1 0 0 Reset
1 1 1 Set

Q(t) Q(t+1) 7 3 Operation
0 0 0 Mo Change
0 1 1 Complement
1 0 1 Complement
1 1 0 No Change

Q(t) Q(t+1) J K Operation
0 0 0 X No Change/Reset
0 1 1 X Set/Complement
1 0 X 1 Reset/Complement
1 1 X 0 No Change/Set

43. If given a choice, which flip-flop would you use to implement
a synchronous circuit (say a sequence detector)? D or JK?

Depends on the usage scenario.

JK flip-flops can lead to a simpler circuit because there are many don’t care
values for the flip-flop inputs to achieve next state from a present state.

D flip-flops have the advantage that we don’t have to setup flip-flop inputs
at all as the next state for D flip-flop is equal to input.

44. In practice, which flip-flop is used more often for
implementing a synchronous circuit? D or JK?

In practice, D flip-flops are used more often because:
1) There are no excitation tables to worry about (Next State = Input)
2) There is only one input for each flip-flop (not two as compared to
JK)
3) D flip-flops are simpler to implement as compared to JK.

45. Design a sequence detector state machine that detects a
pattern “10110” from an input serial stream. Use D Flip-
Flops.

To design any basic sequential circuit, we need to perform following five
steps:
1) Construct a state diagram and a state table,

2) Assign binary codes to all the states defined,

3) Use Present States, Next States, and flip-flop excitation table to
find out the correct flip-flop input values that can help achieve the
Next State from the Present State and Inputs,

4) Write equations for flip-flop inputs and outputs (simplify
equations using circuit minimization techniques like K-Maps),

5) Build the circuit.

Let us assume following states and corresponding meanings:
A: None of the desired pattern is detected yet

B: First bit (1) of the desired pattern is seen

C: First two bits (10) of the desired pattern are seen

D: First three bits (101) of the desired pattern are seen

E: First four bits (1011) of the desired pattern are seen

Based upon the pattern and the states, following will be the state diagram:

| 0114

0/1

The tricky part of this state machine to understand is how it can detect start
of a new pattern from the middle of a detection pattern. For example, notice
the state transition from state D to C. This is required to detect the given
pattern from a stream like- 1010110 - where a new match can start while
state machine is D. Also, notice the state transition from state E to C which
is needed to detect another continuing pattern once the match is seen on first
10110.

Since we have five states, we will need 3 D Flip-Flops to implement this
sequence detector. Let inputs of D Flip-flops be D2, D1, DO. Further, let’s
assume input as X and output as Z.

Let state A be represented as 000, B as 001, C as 010, D as 011 and E as
100.

Now, using Present States, Next States and flip-flop excitation table, try to
find that inputs of flip-flops that would result in transition from present state
to next state. Minimize the circuit using K-Map minimization and get
following: —
| © © = E X x==

Output (Z) = Q2.Q1°.Q0’.X’

D2 =Q2’.Q1.Q0.X

D1 =Q2.Q1’.Q0°.X* + Q2°.Q1.Q0°.X + Q2’.Q0.X"
D0=Q2’.Q1’.X +Q2’.Q0’.X + Q1’.Q0’.X

46. What is the minimum number of flip-flops required to
implement a digital synchronous circuit with 9 states?

Each flip-flop can store one bit of information. Hence one flip-flop can be
used to implement a synchronous circuit requiring up-to 2 states, two flips-
flops for synchronous circuits requiring up-to 4 states, three flips-flops for
synchronous circuits requiring up-to 8 states, and four flip-flops for
synchronous circuits requiring up-to 16 states. Hence, for a synchronous
circuit with 9 states, we have to use 4 flip-flops.

47. Design a circuit that would count 1 every time another
counter counts from 0 to 255.

Implement f/256 circuit.

48. Implement following logics using minimum number of D
Flip-Flops:
a) Clock Divide by 2
b) Clock Divide by 4

Answer :
a) Clock Divide by 2.

CLK/2

cLKk — Q

b) Clock Divide by 4.

CLESq

cLk —» a > a

1.5 Other Miscellaneous Digital Design Questions

49. What is the difference between an ASIC and SOC?

An Application-Specific Integrated Circuit (ASIC) is a component that is
designed for a specific application and is used by specific companies in a

specific system or sold to a single company for their specific use. For
Example: A specific 24x24 10G switch designed for a very specific system
An Application-Specific Standard Product (ASSP) is a more general-purpose
device that is created using ASIC tools and technologies, but is intended for
use by multiple companies for different systems in a wider market. For
Example: An audio/video encoder/decoder chip which is also for a specific
application but targets a wider market.

A System-on-Chip (SoC) is a chip that integrates an entire subsystem
including a microprocessor or microcontroller, memory, peripherals, custom
logic, and so forth.

An ASIC or ASSP can either be an SOC or a non-SOC based on the
different elements of the design present in the chip.

50. What are the different steps in a typical ASIC or SOC design
flow?

The following block diagram describes a typical design flow for an ASIC or
FPGA or SOC design.

Specification

v

High Level Design

Low Level Design

h 4

RTL Coding

M

W
Functional Verification

i

Logic Synthesis

!

Place and Route

!

Fabrication

Gate Level Simulation

W

W

Post Si Validation

1) Specification: This is the first stage in the design process where
we define the important parameters of the system that has to be
designed into a specification.

2) High level Design : In this stage, various details of the design
architecture are defined. In this stage, details about the different
functional blocks and the interface communication protocols between
them etc. are defined.

3) Low level Design: This phase is also known as microarchitecture
phase. In this phase lower level design details about each functional
block implementation are designed. This can include details like
modules, state machines, counters, MUXes, decoders, internal
registers etc.

4) RTL coding : In RTL coding phase, the micro design is modelled
in a Hardware Description Language like Verilog/VHDL, using
synthesizable constructs of the language. Synthesizable constructs are

used so that the RTL model can be input to a synthesis tool to map the
design to actual gate level implementation later.

5) Functional Verification: Functional Verification is the process of
verifying the functional characteristics of the design by generating
different input stimulus and checking for correct behavior of the
design implementation.

6) Logic Synthesis: Synthesis is the process in which a synthesis
tool like design compiler takes in the RTL, target technology, and
constraints as inputs and maps the RTL to target technology primitives.
Functional equivalence checks are also done after synthesis to check
for equivalence between the input RTL model and the output gate level
model.

7) Placement and Routing : Gate-level netlist from the synthesis
tool is taken and imported into place and route tool in the Verilog
netlist format. All the gates and flip-flops are placed, Clock tree
synthesis and reset is routed. After this each block is routed, output of
the P&R tool is a GDS file, which is used by a foundry for fabricating
the ASIC.

8) Gate level Simulation: The Placement and Routing tool
generates an SDF (Standard Delay File) that contains timing
information of the gates. This is back annotated along with gate level
netlist and some functional patterns are run to verify the design
functionality. A static timing analysis tool like Prime time can also be
used for performing static timing analysis checks.

9) Fabrication : Once the gate level simulations verify the
functional correctness of the gate level design after the Placement and
Routing phase, then the design is ready for manufacturing. The final
GDS file (a binary database file format which is the default industry
standard for data exchange of integrated circuit or IC layout artwork)
is normally send to a foundry which fabricates the silicon. Once
fabricated, proper packaging is done and the chip is made ready for
testing.

10) Post silicon Validation: Once the chip is back from
fabrication, it needs to be put in a real test environment and tested
before it can be used widely in the market. This phase involves testing
in lab using real hardware boards and software/firmware that programs

the chip. Since the speed of simulation with RTL is very slow
compared to testing in lab with real silicon, there is always a
possibility to find a bug in silicon validation and hence this is very
important before qualifying the design for a market.

Chapter 2: Computer Architecture

Thanks to Moore's law and continuous innovations in semiconductor
technology, digital VLSI system designs are integrating more and more
components to a single chip. Digital IC designs are trending to be more and
more SOC (System on Chip) designs that integrate a microprocessor or a
Micro controller along with other processors like GPU or DSP and
numerous system components. System components could be hardware
accelerators, memory controllers, peripherals and controllers like PCIE,
USB, SATA, Ethernet etc. Another trend is the increasing number of
processor cores (from dual to quad to octa cores) integrated on a single chip.

With this trend, understanding fundamentals of computer architecture has
gained a lot of importance for VLSI design and verification engineers. Most
of the SOC design verification revolves around a CPU and may involve
writing tests that can program or initialize CPUs and access other system
components using the CPU. Hence, it is observed that in many SOC design
or verification interviews, candidates are judged based on their computer
architecture knowledge.

In this section, we list down some of the most commonly asked questions in
computer architecture.

51. What is the difference between a RISC and CISC
architecture?

RISC refers to Reduced Instruction Set Computing and CISC refers to
Complex Instruction Set Computing.

e RISC architecture has less number of instructions and these
instructions are simple instructions (i.e. fixed length instructions, and
less addressing modes). On the other hand, CISC architecture has more
number of instructions and these instructions are complex in nature
(i.e. variable length instructions, and more addressing modes).

e RISC approach is to have smaller instructions and less complex
hardware, whereas CISC approach is to have more complex hardware
to decode and break down complex instructions. Hence, In RISC
architecture emphasis is more on software, whereas in CISC
architecture emphasis is more on hardware.

e Since CISC has complex hardware, it requires smaller software
codes and hence less RAM to store programming instructions. As
RISC has less complex hardware, RISC require software programs that
uses more number of instructions and hence more RAM to store
instructions.

e Instructions in RISC architecture usually require one clock cycle
to finish, whereas instructions in CISC architecture can take multiple
clock cycles to complete depending upon the complexity of the
instruction. Due to this, pipelining is possible in RISC architecture.

e RISC architecture aims to improve performance by reducing
number of cycles per instruction whereas CISC architecture attempts
to improve performance by minimizing number of instructions per
program.

CISC architectures supports single instruction that can read from memory,
do some operation and store back to memory (known as memory to memory
operation).

RISC architectures on the other hand would need multiple instructions to: 1)
load the value from memory to an internal register, 2) perform the intended
operation, and 3) write the register results back to memory.

Example : If we have to multiply two numbers stored at memory locations
M1 and M2 and store the result back in memory location M1, we can
achieve this through a single CISC instruction:

MULT M1, M2

Whereas for RISC, we would need following multiple instructions:

LOAD A, M1

LOAD B, M2

PROD A, B

STORE M1, A

Having mentioned all the differences above, it’s important to point out that
with advanced computer micro-architecture; even lots of CISC architecture
implementations internally translate the complex instructions into simpler
instructions first.

What is the difference between Von-Neumann and Harvard
Architecture and which would you prefer?

In Von Neumann architecture , there is a single memory that can hold both
data and instructions. Typically, this would mean that there is a single bus
from CPU to memory that accesses both data and instructions. This
architecture has a unified cache for both data and instructions.

In Harvard Architecture , memory 1s separate for data and instructions.
There can be two separate buses to access data and instruction memory
simultaneously. There will also be separate caches for Instruction and Data
in this architecture.

The Von Neumann architecture is relatively older and most of the modern
computer architectures are based on Harvard architecture.

53. Explain the concept of Little Endian and Big Endian formats
in terms of memory storage?

Endian-ness refers to the order in which bytes are stored in a memory (It can
also be applicable to digital transmission systems where it describes the byte
order for transmission)

Memory is normally byte addressable but majority of the computer
architectures works on 32 bit size or a word size (4 bytes) operands. Hence,
for storing a word into a byte addressable memory there are two ways:
1) Store the Most significant byte of the word at a smaller address.
This type of storage refers to Big Endian format.
2) Store the Least significant byte of the word at a smaller address.
This type of storage refers to Little Endian format.

For example: If a CPU is trying to write the word 0OxXDDCCBBAA to an
address starting from 0x1000 (address range: 0x1000 to 0x1003), the bytes
can be stored in following two different endianness as shown below.

Little Endian Big Endian
Address Data Byte Address Data Byte
0x1000 AA 0x1000 DD
0x1001 BB . 0x1001 CcC
Ox1002 CcC 0x1002 BB
0x1003 DD ' 0x1003 AA

54. What is the difference between a SRAM and a DRAM?

DRAM stands for Dynamic Random Access Memory. It is a type of memory
in which the data is stored in the form of a charge. Each memory cell in a
DRAM is made of a transistor and a capacitor. The data is stored in the
capacitor. DRAMs are volatile devices because the capacitor can lose charge
due to leakage. Hence, to keep the data in the memory, the device must be
regularly refreshed.

On the other hand, SRAM is a static memory and retains a value as long as
power is supplied. SRAM is typically faster than DRAM since it doesn't
have refresh cycles. Each SRAM memory cell is comprised of 6 Transistors
(unlike a DRAM memory cell which is comprised of 1 Transistor and 1
Capacitor). Due to this, the cost per memory cell is more for SRAM

In terms of usage, SRAMs are used in Caches because of higher speed and
DRAMs are used for main memory in a PC because of higher densities .

55. A computer has a memory of 256 Kilobytes. How many
address bits are needed if each byte location needs to be

addressed? S
3 Bylas

Since the total memory size is 256KB (2 ® * 2 1° Bytes), each address would
be eighteen bits wide.

56. What are the different types of registers implemented in a
CPU?

1) Program Counter (PC): A Program Counter is a register that holds
the address of the instruction being executed currently.

2) Instruction Register (IR): An Instruction Register is a register that
holds the instruction that is currently getting executed. (It will be value
at the address pointed by PC)

3) Accumulator: An accumulator is a register that holds the
intermediate results of arithmetic and logic operations inside a
processor

4) General Purpose Registers: General Purpose Registers are
registers that can store any transient data required by a program. The
number of General purpose registers is defined by the architecture and
these can be used by Software (Assembler) for storing temporary data
during a program execution. More the number of General Purpose
registers, faster will the CPU execution.

5) Stack Pointer Register (SP): The Stack Pointer Register is a
special purpose register that stores the address of the most recent entry
that was pushed on to stack. T he most typical use of a stack is to store
the return address of a subroutine call. The SP register helps in
maintaining the top of the Stack Address.

57. Explain the concept of pipelining in computer architecture?

Pipelining is a technique that implements a form of parallelism called
instruction-level parallelism within a single processor. The basic instruction
cycle is broken up into a series of steps called a pipeline. Rather than
processing each instruction sequentially (finishing one instruction before
starting the next), each instruction is split up into a sequence of steps so

different steps can be executed in parallel and instructions can be processed
concurrently (starting one instruction before finishing the previous one).

Pipelining increases instruction throughput by performing multiple
operations at the same time, but does not reduce instruction latency, which is
the time to complete a single instruction from start to finish, as it still must
go through all steps.

For example: an Instruction life cycle can be divided into five stages - Fetch,
Decode, Execute, Memory access, and Write back. This allows the
processor to work on several instructions in parallel.

58. What is a pipeline hazard? What are the different types of
hazards in a pipelined microprocessor design?

A pipeline hazard is a situation where the next instruction in a program
cannot be executed for a certain reason. There are three types of hazards that
occur in a pipelined microprocessor as follows:

1) Structural Hazards : These hazards arise because of resource
conflict that prevents overlapped execution. For example: if the design
has a single Floating Point Execution unit and if each execution takes
2 clock cycles, then having back to back Floating point instructions in
the program will cause the pipeline to stall. Another resource that can
conflict is memory/cache access.
2) Data Hazards : These hazards arise when an instruction depends
on the result of a previous instruction in a way exposed by the pipeline
overlapped execution. There can be three types of Data hazards:

a) Read after Write (RAW) - This happens if an instruction

needs a source which is written by a previous instruction.

b) Write after Write (WAW) - This happens if an instruction

writes to a register which is also written by a previous instruction

c) Write after Read (WAR) - This happens if an instruction

writes to a register which is a source for a previous instruction
3) Control Hazards: These hazards arise because of branch and
jump instructions that changes the sequence of program execution.

59. What techniques can be used to avoid each of the 3 types of
pipeline hazards - Structural, Data and Control Hazards?

Following are some of the techniques that are used to avoid each of the
pipeline hazards:
1) Structural Hazards :
a) Duplicating resources to enable parallel execution -
separating instruction and data caches, having multiple execution
units for integer and floating point operations, separate load and
store units, etc.
2) Data Hazards :
a) Out of order execution - Instructions which are not
dependent on each other can execute while the dependent
instruction stalls.
b) Data forwarding - For RAW hazards, the write from an
instruction can be forwarded to the next dependent instruction to
eliminate the hazard.
3) Control Hazards :
a) Use branch prediction algorithms to make predictions about
branch outcome so that correct set of instructions can be fetched
following the branch.

60. A pipelined machine has 10 stages as shown below. Each
stage takes 1 ns to process a data element. Assuming there
are no hazards, calculate the time taken to process 100 data
elements by the machine.

1ns
i

e Stagel | 1 2 Stago 0 -

Each stage of pipeline takes 1ns to process a data element. Since there are 10
stages, the first element takes 10 * 1ns to come out of the pipeline and by

that time, the pipeline would be full and all other 99 elements would only
take 1ns each. Hence total time taken = (10+99) ns = 109 ns

61. What are the different types of addressing modes for an
instruction?

Following are some of the most commonly used addressing modes for an
instruction (though several other modes might also be supported by some
architectures):
1) Immediate mode : In this mode, the operands are part of the
instruction itself as constants as shown below:
add r0 r1 0x12 (add a constant value of 0x12 with contents of r1
and store result in r0)
. . 2) Direct Addressing mode: In this mode, the address of the
IWY'““&‘“_G’* operand is directly specified in the instruction.
G load r0 0x10000 (load data from address 0x10000 to register
: - 1r0)
) 3) Register Addressing mode: In this mode, the operands are
Vdﬁf'?w -2 pldced in registers and the register names are directly specified part of
(5) instruction

mul 10, r1, r2 (multiply contents of r1 and r2, and store the result
in r0)

4) Indexed Addressing mode: In this mode, content of an index
register is added with an offset (which is part of instruction) to get the
effective address.

load rO r1 offset (Here r1 contains the base address, and “r1 +

offset” will give the address of a memory location from which data is read
and stored into r0)

62. What is the principle of spatial and temporal locality of
reference?

Locality of reference is a principle that defines if a memory location is
accessed by a program, how frequently will the same memory location or

nearby storage locations be accessed again.

There are two types of locality of reference explained as below:
1) Temporal Locality: If at one point in time a particular memory
location is referenced, then it is likely that the same location will be
referenced again in the near future.
2) Spatial Locality: If a particular memory location is referenced at a
particular time, then it is likely that nearby memory locations will be
referenced in the near future.

63. What are different kinds of memories in a system?
1) Register

2) Cache

3) Main Memory/Primary Memory

4) Secondary Memory (Magnetic/Optical)

64. What is a cache?

Cache is a small amount of fast memory. It sits between the main memory
and the CPU. It may also be located on a CPU chip/module.

Block Transfer

Word Transfer T

CPU Cache Main

Memory

65. Give an overview of Cache Operation. What’s the principle
behind functioning of cache?

Whenever CPU requests for contents of a memory location, cache is checked
for this data first. If data is present in the cache, CPU gets the data directly
from the cache. This is faster as CPU doesn’t need to go to main memory for
this data. If data is not present in the cache, a block of memory is read from
main memory to the cache and is then delivered from cache to CPU in
chunks of words. Cache includes tags to identify which block of main
memory is in each cache slot.

66. What is a cache miss or hit condition?

When an address is looked up in the cache and if the cache contains that
memory location, it is knows as a cache hit. When the address looked up in
the cache is not found, then it is known as a cache miss condition.

67. Will there be a difference in the performance of a program
which searches a value in a linked list vs a vector on a
machine that has cache memory present?

A linked list is a data structure that stores its elements in non-contiguous
memory location while a vector is a data structure that stores elements in
contiguous locations.

For a design with cache memory: if one of the memory locations is present
in the cache, it is highly likely that the following bytes (contiguous bytes)
would also be present in cache memory as any fetch from the main memory
to the cache is usually fetched in terms of cache lines (which are generally
64 or 128 bytes). Because of this, searching through a vector will be faster
than searching through a linked list on a machine which has cache memory.

68. What are the different mechanisms used for mapping
memory to caches? Compare the advantages and
disadvantages of each.

There are three main mapping techniques that are used for mapping main
memory to caches as explained below. In each of these mapping, the main
memory and the cache memory are divided into blocks of memory (also
known as cache line and is generally 64 bytes) which is the minimum size
used for mapping.

1) Direct Mapping : In Direct mapping, there is always a one to one
mapping between a block of main memory and cache memory. For
example: in the diagram below, the size of cache memory is 128
blocks while the size of main memory is 4096 blocks. Block 0 of main
memory will always map to Block 0 of cache memory, Block 1 to
Block 1,, and Block 127 will map to Block 127. Further, Block
128 will again map to Block 0, Block 129 to Block 1, .., so on, and
this can be generalized as Block “ k“ of main memory will map to
Block “k modulo 128” on to the cache.

If the block size is 64B and the address is 32 bits, then address [5:0]
will be used to index into the block, address [12:6] will be used to
identify which block in cache this address can map and remaining
address bits address [31:13] will be stored as tag bits along with the
data in the cache memory.

Memory Address
Block Block Index
Tag) ‘:Ff. | (Word dentifier
Sl In a Block)
Cache Main Memory
Tag Block1 Block 1
Tag Block 2 | Block2
Tag Block 3 Block3 |
Tag Block 4 Block 4
I. | | I |
| | | !
| | | |
| | : |
Tag Block 128 | :
|
" Block4095 |

This is the simplest of all mapping and by knowing the memory
address, the possible location in cache can be computed easily and a
comparison with tag bits in that single location alone will tell you if a
cache is hit or miss. The disadvantage of this mapping is that even
though cache may not be full, but if memory access pattern is to
addresses which fall in same block, it can cause more evictions and is
not efficient.

2) Fully Associative Mapping; In fully associative mapping, any

block of memory can be mapped to any block in the cache memory.
Using the same example as shown in the diagram above, address [5:0]

will be used to index inside the block, and all remaining bits i.e.
address [31:6] will be stored as tag bits along with the data in cache.
For looking up any memory address, all the address bits [31:6] have to
be compared against all the tag bits in the cache location and this
demands a bigger comparator logic that can consume more power. The
advantage of this mapping is that all locations can be fully utilized as
any memory block can map to any cache block.

3) Set-Way Associative Mapping; In this mapping, the blocks of
cache memory are grouped into a number of sets. For example, the
diagram below shows the same cache of 128 blocks organized as 64
sets with each set having 2 blocks. Based on the number of blocks in a
set, this is known as 2 way set associative cache. In this mapping, the
main memory block is direct mapped to a set and then within the set it

is associated with any block.

Cache
Set 0 ; Tag Block 1
| Tag Block 2
"l Ta Block 3
setl - - &
L | Teg Block 4
R Block 127
Set63 - (MR “oc
_ | Tag | Block128

Considering the same example of a 32 bit address, address [5:0] will
be used to index to a byte in the block, address [11:6] will be used to
directly map to one of the 64 sets of the cache and remaining address
bits [31:12] will stored as tag bits along with each cache line.

69. What's the disadvantage of having a cache with more
associativity?

A cache with more associativity will need a bigger comparator to compare
an incoming address against the tags stored in all the ways of the set. This
means more power consumption and more hardware.

70. A byte addressable CPU with 16-bit address bus has a cache
with the following characteristics: a) It is direct-mapped with
each block of size 1 byte and b) The cache index for blocks is
the four bits. How many blocks does the cache hold? How
many tag bits are needed to be stored as part of cache block?

Since the index for blocks in cache is 4 bits, there will be a total of 16 blocks
in the cache. Given a 16 bit address and block size of 1 byte, address [3:0]
will be used to index into the 16 blocks in cache and remaining bits
address[15:4] will be used as tag bits.

71. A 4-way set associative cache has a total size of 256KB. If
each cache line is of size 64 bytes, how many sets will be
present in the cache? How many address bits are needed as
tag bits? Assume address size as 32 bits.

Total number of blocks in cache = 256K/64 = 4096. Since the cache is 4
way set associative, number of sets = 4096/4 = 1024 sets.

Given a 32 bit address and 64 byte cache line, address [5:0] is used to index
into cache line, address [15:6] is used to find out which set the address maps
to (10 bits) and remaining address bits [31:16] are used as tag bits.

72. What is difference between write-thru and write-back
caches? What are the advantages and disadvantages?

Write Thru Cache: In a write-thru cache, every write operation to the cache
is also written to the main memory. This is simple to design as memory is
always up to date with respect to cache, but comes with the drawback that
memory bandwidth is always consumed for writes.

Write Back Cache: In a write-back cache, every write operation to the
cache is only written to cache. Write to main memory is deferred until the
cache line is evicted or discarded from the cache. Write back Caches are
better in terms of memory bandwidth as data is written back only when
needed. The complexity comes in maintaining coherent data if there are
multiple caches in system that can cache a same address, as memory may not
always have latest data.

73. What is the difference between an inclusive and exclusive
cache?

Inclusive and exclusive properties for caches are applicable for designs that
have multiple levels of caches (example: L1, L2, L3 caches).

If all the addresses present in a L1 (Level 1) cache is designed to be also
present in a L2 (Level 2) cache, then the L1 cache is called a strictly
inclusive cache. If all the addresses are guaranteed to be in at-most only one
of the L1 and L2 caches and never in both, then the caches are called
exclusive caches.

One advantage of exclusive cache is that the multiple levels of caches can
together store more data. One advantage of inclusive cache is that in a
multiprocessor system, if a cache line has to be removed from a processor’s
cache, it has to be checked only in L2 cache while with exclusive caches, it
has to be checked for presence in both L.1 and L2 caches.

74. What are the different algorithms used for cache line
replacement in a set-way associative cache?

Following are some of the algorithms that can be implemented for cache line
replacements.

track of when a cache line is used by associating “age bits” along with
cache line and discards the least recently used one when needed.

LRU and the line that is most recently used in terms of age gets
replaced.

3) PLRU (Pseudo L RU) Algorithm : This is similar to LRU except
that instead of having aging bits (which is costly with larger and higher
associative caches), only one or two bits are implemented to keep track
of usage.

track of how often a line is accessed and decides to replace the ones
that are used least number of times.

5) ¢Randeomureplacement: In this algorithm, there is no information
stored and a random line is picked when there is a need for
replacement.

75. What is the problem of cache coherency?

In Shared Multiprocessor (SMP) systems where multiple processors have
their own caches, it is possible that multiple copies of same data (same
address) can exist in different caches simultaneously. If each processor is
allowed to update the cache freely, then it is possible to result in an
inconsistent view of the memory. This is known as cache coherency
problem.

For example: If two processors are allowed to write value to a same address,
then a read of same address on different processors might see different
values.

76. What is the difference between snoop based and directory
based cache coherency protocol?

Following is the difference between the two types of cache coherency
protocols:

A o one -

shoeeo!

1) Snoop based Coherence Protocol: In a Snoop based Coherence
protocol; a request for data from a processor is send to all other
processors that are part of the shared system. Every other processor
snoops this request and sees if they have a copy of the data and
responds accordingly. Thus every processor tries to maintain a
coherent view of the memory

2) Directory based Coherence Protocol: In a Directory based
Coherence protocol; a directory is used to track which processors are
accessing and caching which addresses. Any processor making a new
request will check against this directory to know if any other agent has
a copy and then can send a point to point request to that agent to get
the latest copy of data.

Following are some of the advantages or disadvantages of each protocol:

Snoop Based Coherence Directory Based Coherence

For smaller systems, Snoop based
coherence will be faster if enough
bandwidth for messages available

Directory based coherency can have longer
latencies with a central lookup table that
needs to be looked up before sending
messages

Not scalable for larger SMP systems as
messages need to be broadcasted for
every request and can flood the system

Scales better and are used in larger SMP
systems as there is no broadcast messages

77. What is a MESI protocol?

The MESI protocol is the most commonly used protocol for cache coherency
in a design with multiple write back caches. The MESI stands for states that
are tracked per cache line in all the caches and are used to respond to snoop
requests. These different states can be explained as below:

1) M (Modified) : This state indicates that the cache line data is
modified with respect to data in main memory and is dirty.

2) E (Exclusive) : This state indicates that the cache line data is
clean with respect to memory but is exclusively present only in this

memory. The exclusive property allows the processor in which this
cache is present to do a write to this line

3) S (Shared) : This state indicates that the cache line data is shared
in multiple caches with same value and is also clean with respect to
memory. Since this is shared with all caches, the protocol does not
allow a write to this cache line.

4) I (Invalid) : This state indicates that the cache line is invalid and
does not have any valid data.

A cache can service a read request when the cache line is in any state other
than Invalid. A cache can service a write request only when the cache line is
in Modified or Exclusive state.

78. What are MESIF and MOESIF protocols?

These are two extensions of MESI protocol which introduces two new states
“F” and “O” which are explained below:

1) F (Forward) : The F state is a specialized form of the S state, and
indicates that a cache should act as a designated responder for any
requests for the given line by forwarding data. If there are multiple
caches in system having same line in S state, then one of them is
designated as F state to forward data for new requests from a different
processor. The protocol ensures that if any cache holds a line in the S
state, at most one (other) cache only holds it in the F state. This state
helps in reducing traffic to memory as without F state, even if a cache
line is in S state in multiple caches, none of them cannot forward data
to a different processor requesting a read or write. (Note that an S state
line in cache can only service the same processors reads).

2) O (Owned) : The O state is a special state which was introduced
to move the modified or dirty data round different caches in the system
without needing to write back to memory. A line can transition to O
state from M state if the line is also shared with other caches which
can keep the line in S state. The O state helps in deferring the modified
data to be written back to memory until really needed.

79. Whatis a RFO?

RFO stands for Read for Ownership. It is an operation in cache coherency
protocol that combines a read and invalidate broadcast. It is issued by a
processor trying to write into a cache line that is in the Shared or Invalid
states. This causes all other processors to set the state of that cache line to I.
A read for ownership transaction is a read operation with intent to write to
that memory address. Hence, this operation is exclusive. It brings data to the
cache and invalidates all other processor caches that hold this memory
address.

80. What is the concept of Virtual memory?

Virtual memory is a memory management technique that allows a processor
to see a virtual contiguous space of addresses even if the actual physical
memory is small. The operating system manages virtual address spaces and
the assignment of memory from secondary device (like disk) to physical
main memory. Address translation hardware in the CPU, often referred to as
a memory management unit or MMU, translates virtual addresses to physical
addresses. This address translation uses the concept of paging where a
contiguous block of memory addresses (known as page) is used for mapping
between virtual memory and actual physical memory. Following diagram
illustrates this concept.

Virtual Memory
Physical Memory
(RAM+Disk)
Translation
Organized WA to PA
as Pages
= Disk

81. What is the difference between a virtual memory address
and a physical memory address?

The address used by a software program or a process to access memory
locations in it’s address space is known as virtual address . The Operating
System along with hardware then translates this to another address that can
be used to actually access the main memory location on the DRAM and this
address is known as physical address . The address translation is done using
the concept of paging and if the main memory or DRAM does not have this
location, then data is moved from a secondary memory (like Disk) to the
main memory under OS assistance.

82. What is the concept of paging?

All virtual memory implementations divide a virtual address space into
pages which are blocks of contiguous virtual memory addresses. A page is

the minimum granularity on which memory is moved from a secondary
storage to physical memory for managing virtual memory.

Pages on most computer systems are usually at least 4 kilobytes in size.
Some architectures also supports large page sizes (like 1MB or 4MB) when
there is a need of much larger real memory.

Page tables are used to translate the virtual addresses seen by the application
into physical addresses. The page table is a data structure used to store the
translation details of a virtual address to a physical address for multiple
pages in the memory.

83. What is a TLB (Translation lookaside buffer)?

A TLB is a cache that stores the recent address translations of a virtual
memory to physical memory which can be then used for faster retrieval later.
If a program requests a virtual address and if it can find a match in the TLB,
then the physical address can be retrieved from the TLB faster (like a cache)
and the main memory need not be accessed. Only, if the translation is not
present in TLB, then a memory access needs to be performed to actually do
a walk through the page tables for getting the address translation which takes
several cycles to complete. Following diagram illustrates this, where if the
translation is found in the TLB, the physical address is available directly
without needing to go through any Page table translation process.

Virtual]
Address Page Tables and

CPU —» | MMU | — | Translation process — Physical

Address

TLB

84. What is meant by page fault?

When a memory page that is mapped into Virtual Address Space but is not
loaded into the main memory is accessed by a program, computer hardware
[Memory Management Unit (MMU)] raises an interrupt. This interrupt is
called Page Fault.

85. If a CPU is busy executing a task, how can we stop it and run
another task?
The program execution on a CPU can be interrupted by using external

interrupt sources.

86. What are interrupts and exceptions and how are they

A Syne different?

N\

Q/WC -

Hercwore

Interrupt is an asynchronous event that is typically generated by an external
hardware (an I/O device or other peripherals) and will not be in sync with
instruction execution boundary. For example: An interrupt can happen from
a keyboard or a storage device or a USB port. Interrupts are always serviced
after the current instruction execution is over, and the CPU jumps to
execution of the Interrupt service routine.
E xceptions are synchronous events generated when processor detect any
predefined condition while executing instructions. For example: when a
program encounters a divide by zero or an undefined instruction, it can
generate an exception. Exceptions are further divided into three types and
how the program flow is altered depends on the type:

1) Faults: Faults are detected and serviced by processor before the

faulting instruction

2) Traps: Traps are serviced after the instruction causing the trap.

The most common trap is a user defined interrupt used for debugging.

3) Aborts: Aborts are used only to signal severe system problems

when execution cannot continue any longer.

87. What is a vectored interrupt?

A vectored interrupt is a type of interrupt in which the interrupting device
directs the processor to the correct interrupt service routine using a code that
is unique to the interrupt and is sent by the interrupting device to the
processor along with the interrupt.

For non-vectored interrupts, the first level of interrupt service routine needs
to read interrupt status registers to decode which of the possible interrupt
sources caused the interrupt and accordingly decide which specific interrupt
service routine to be executed.

88. What are the different techniques used to improve
performance of instruction fetching from memory?

1) Instruction Cache and Pre-fetch: An instruction cache and
Prefetch algorithm will keep on fetching instructions ahead of the
actual instruction decode and execute phases, which will hide the
memory latency delay for instruction fetch stage in the design.

2) Branch Prediction and Branch Target Prediction: A Branch
Prediction will help in predicting if a conditional branch will take
place or not based upon the history, and A Branch Target Prediction
will help predicting the target before the processor computes. This
helps in minimizing instruction fetch stalls as the fetch algorithm can
keep fetching instructions based on prediction.

89. What is meant by a superscalar pipelined processor?

A superscalar pipelined design uses instruction level parallelism to enhance
performance of processors. Using this technique, a processor can execute
more than one instruction during a clock cycle by simultaneously
dispatching multiple instructions to different execution units on the
processor. If the processor can execute “N” instructions parallely in a cycle
then it is called N-way superscalar.

90. What is the difference between in-order and out-of-order
execution?

In-Order Execution : In this model, instructions are always fetched,
executed and completed in the order in which they exist in the program. In
this mode of execution, if one of the instructions stalls, then all the
instructions behind it also stall.

Out-of-Order Execution: In this model, instructions are fetched in the
order in which they exist in the program, their execution can happen in any
order, and their completion again happen in-order. The advantage of this
model is that if one instruction stalls, then independent instructions behind
the stalled instruction can still execute, thereby speeding up the overall
execution of program.

91. What is the difference between a conditional branch and
unconditional branch instruction?

A branch instruction is used to switch program flow from current instruction
to a different instruction sequence. A branch instruction can be a conditional
branch instruction or an unconditional branch instruction.

Unconditional Branch Instruction : A branch instruction is called
unconditional if the instruction always results in branching.

Example : Jump <offset > is an unconditional branch as the result of
execution will always cause instruction sequence to start from the <offset>
address

Conditional Branch Instruction : A branch instruction is called
conditional if it may or may not cause branching, depending on some
condition.

Example : beq ra, rb, <offset > is a conditional branch instruction that
checks if two source registers (ra and rb) are equal, and if they are equal it
will jump to the <offset> address. If they are not equal, then the instruction
sequence will continue in the same order following the branch instruction.

Nemer;

92. What is branch prediction and branch target prediction?

A branch predictor is a design that tries to predict the result of a branch so
that correct instruction sequences can be pre-fetched into instruction caches
to not stall instruction execution after encountering a branch instruction in
the program. A branch predictor predicts if a conditional branch will be
taken or not-taken.

A branch target predictor is different and predicts the target of a taken
conditional branch or an unconditional branch instruction before the target of
the branch instruction is computed by the execution unit of the processor.

93. What is meant by memory mapped 1I/0?
> Phe o devcte esativl
Memory Mapped I/0 (MMIO) is a method of performing input/output
(I/0) between a CPU and an I/O or peripheral device. In this case, the CPU
uses the same address bus to access both memory and I/0O devices (the
registers inside I/O device or any memory inside the device). In the system
address map, some memory region is reserved for the I/O device and when
this address is accessed by the CPU, the corresponding I/O devices that
monitor this address bus will respond to the access.
For Example: if a CPU has a 32 bit address bus: it can access address from 0
to 2 3%, and in this region, we can reserve addresses (say from 0 to 2 '°) for
one or more I/0O devices.

94. What's the advantage of using one-hot coding in design?

In one-hot coding, two bits are changing each time, one being cleared and
the one being set. The advantage being that you don't need to do decode to
know which state you are in. It uses more Flip-Flops but less combinational
logic and in timing critical logic not having the decode logic may make the
difference.

Chapter 3: Programming Basics

In the present day scenario where Digital VLSI Designs are trending towards
SOC designs with increased complexity, the Design Verification job is
visibly becoming more and more software oriented. Both Design and
Verification Engineers need to possess strong hardware and software skills
surrounding the hardware and software interface. Additionally, with
verification testbenches and simulation models becoming more and more
complex, software programming knowledge has become a must-have skill
for any Verification Engineer.

A Design Verification Engineer should know at-least one programming
language thoroughly (C/C++/SystemVerilog), should have strong scripting
skills, working knowledge and familiarity with UNIX/Linux environments,
and a good understanding of object oriented programming concepts.

Due to these reasons, questions that test a candidate’s understanding of
programming basics are part of almost all Verification job interviews.
Ability to think and code algorithms, and model design behaviors forms a
vital component of an interview.

This section is therefore organized into various sub-sections, and lists down
some of the most commonly asked interview questions with their answers.
First section consists of questions that test Basic Programming Concepts.
Second section consists of questions on Object Oriented Programming, and
the third section consists of programming examples specific to most
commonly used languages. Third section is further sub-divided into three
parts and has questions covering UNIX, Linux, C, C++, and Perl.

For better understanding, wherever possible, we have tried to explain the
approach required to solve a problem.

3.1 Basic Programming Concepts

95. What is the difference between a static and automatic
variable, local variable and a global variable in any
programming language?

There are two separate concepts that distinguish local, auto, static and global
variables. The “scope” of a variable defines where it can be accessed and the
“storage duration” determines how long the variable can be accessed.

1) The scope of variable distinguishes between local and global
variables. Local variables have limited scope and are visible only
within the block of code in which they are declared. Global variables
are accessible anywhere in the program once declared.

2) The storage duration distinguishes between an automatic and
static variable. Static variables have a lifetime that lasts till the end of
program and hence are accessible throughout. The scope is still
defined based on whether it is a local or global variable. Automatic
variables are those which only have a lifetime until the program
execution leaves the block/scope in which they are defined.

For Example: In following SystemVerilog code:

global_int is declared as a class member and has a global scope throughout
the class while its life ends when the object of the class is de-referenced
global_stati ¢ variable is declared as a static variable and has a global scope
throughout the class as well as a lifetime throughout the program, even after
the object of class is de-referenced or even constructed

sum variable is local to the functio n compute() and is visible only inside
function and also exists only for the duration whe n compute() is executed
“count ” variable is local to the functio n compute() and is visible only
inside the scope of function but since it is static it only has a single copy and
retains the value even after the functio n compute() is executed multiple
times.

class test_class;
int global_int ; //automatic by default

static global_static ; //global static variable
void function compute ()
begin
static int count ; //local static variable
local int sum ; //local automatic variable
sum = sum + 1;
count = count + sum;
end
endclass

96. What do you mean by inline function?

An inline function is a function that is expanded inline when invoked i.e. the
compiler replaces the function call with the corresponding function code.
This is beneficial if the function is a small code and used at several places.
Instead of having the overhead of calling functions and returning from
function, this will be faster (especially if the function is smaller).

For Example: In C, you can define an inline function called “max” as below
and every instance of the function called inside main will be replaced with
code instead of function call

inline int max (inta,intb) {
returna>b?a:b;

}

main () {
int al,a2,a3,bl,b2,b3;
intcl,c2, c3;

cl =max (al,bl);
c2 =max (a2, b2);
c3=max (a3, b3);

97. What is a “regular expression”?

A regular expression is a special sequence of characters that help a user
match or find other strings (or sets of strings), using a special syntax. It is
one of the most powerful concepts used for pattern matching within strings.
Regular expressions are widely used in languages like Perl, Python, Tcl etc.

98. What is the difference between a heap and a stack?

A stack is a special region of memory that stores temporary variables
created by a function. Every time a function declares a new automatic
variable, it is pushed to the stack and every time the function exits, all of the
variables pushed on the stack are deleted. All local variables uses stack
memory. Stack memory is managed automatically and also has a size
limitation. If stack runs out of memory, we get stack overflow error.

A heap on the other hand is a region of memory that needs to be managed.
The programmer (and in some languages that support garbage collection, the
compiler) has to allocate and free memory. These are typically used to store
static variables as well as for objects. It is slightly slow compared to stack
and is referenced through pointers. Also unlike stack, variables stored on
heap can be referenced from anywhere in the program. Size of heap can be
changed. Heap can have fragmentation problem when available memory is
stored as disconnected blocks.

99. What is the difference between ++a and a++ in any
programming language?

++a first increment the value of “a” and then returns a value referring to “a”.
Hence, if “++a” is assigned to a variable, then incremented value of “a” will
be used.

a++ first returns value of “a” (which is current value of “a”) and then
increments “a”. Hence, if “a++” is assigned to a variable, then old value of
“a” will be used in the assignment.

100. What is meant by memory leak?

When we allocate memory dynamically but somehow lose the way to reach
that memory, then it is called a memory leak. In certain programming
languages like C++, every memory allocation done (say for creating
objects), should be freed up (by calling destructors) without which those
memories would leak and would no longer be available. In certain other
languages like SystemVerilog, Java, etc., the language internals takes care of
cleaning up memory and has lesser chance of memory leak.

101. What is the difference between a Compiler and an
Interpreter?

For a machine (like a computer) to understand a code, it should be in a
binary (combination of 0’s and 1’s) format. This binary code which is
understandable by a machine is called “machine code”.

Programmers usually write a computer program/code using a high-level
programming language (e.g. C/C++/Perl/Python). High level computer
program/code written is called source code. For a machine to understand this
source code, it should be converted to a machine code. Compiler and
Interpreters are programs that convert a source code into a machine code.

Compiler Interpreter
Scans through entire program and
translates entire source code to
machine code.
Requires large amount of time to analyze Requires less amount of time to
source code analyze source code
Qutput code is some sort of
Outputs machine specific binary code. | intermediate code which is interpreted
by another program
Faster Execution (as computer hardware | Slower Execution (as it is executed by

Scans and translates source code
taking one statement at time.

executes it) another program)
Programming language like C, C++ use | Scripting language like Perl, Python
compilers, use interpreters.

Continues translating the program until
the first error is met. Stops after first
error is met.

Generates an error message only after
scanning the whele program.

102. What is the difference between a statically typed language
and a dynamically typed language?

Statically Typed Language: A statically typed language is one in which
types are fixed at compile time. This means you need to declare all variables
with their datatypes before using them. For Example: Java, C, and
SystemVerilog are statically typed languages.

Dynamically Typed Language: A dynamically typed language is one in
which types are discovered at execution time. This is opposite to that of
statically typed languages. For Example: VBScript and Python are
dynamically typed and you need not declare all variables with their data
types before using. They figure out what type a variable is when you first
assign a value for the variable.

103. Which of the following is false related to Stack?

1) Only Push and POP operations are applicable to stack
2) Stack Implements a FIFO

3) Stack is useful for nested loops, subroutine calls

4) Stack is efficient for arithmetic expression evaluation

Option (2) is false.
Stack doesn’t implement a FIFO but it is a LIFO (Last in First Out).
Variables that are pushed onto stack last are popped back.

104. What are the major difference(s) between “use” and
“require” in Perl?

Following are the major differences:
1) “use” is evaluated at compile-time, whereas “require” is evaluated
at run-time.

2) “use” implicitly calls the import function of the module being
loaded, whereas “require” doesn’t.

3) “use” only expects a bareword, whereas “require” can either take
a bareword or an expression.

105. What is the difference between static and dynamic memory
allocation?

Static Memory Allocation Dynamic Memory Allocation
Memory is allocated at compile time. | Memory is allocated at run time.
Memory is allocated either on a stack
or on other sections of the program.
No need to free this memory. Lifetime

of a variable in static memory is the |Need to explicitly free the memory.
lifetime of the program.

Memory is allocated on heap.

Fixed in size. Once allocated, memory Can change in size. (using
size can't be changed. realloc())
Faster Execution Slower Execution

106. What are the pre-processor directives?

In a code, Pre-processor directives are the lines that start with a hash (#)
sign. These act as directives to a pre-processor that examines the code before
the compilation of the code begins. Pre-processor changes the source code
and the result is a new source code with these directives replaced. For
Example: Normal syntax of a pre-processor directive is:

#define identifier value

Whenever pre-processor encounters “ identifie r ” in the source code, it
replaces it with “ valu e ”, and generates a new source code before
compilation.

b

107. What is the function of “using namespace std” in C++ codes?

A “namespace” allows a programmer to group entities like classes, objects,
and functions under a name. “std” is short for the word “standard”. A
standard namespace (std namespace) is a special type of namespace where
all built-in C++ library routines are kept (like string, cin, cout, vector etc.).
Therefore, “using namespace std” tells C++ compiler to use the standard
C++ library.

108. What is the difference between following initializations: “int
a;” and “const int a;”

const keyword tells the compiler that a variable or object should not change
once it has been defined. Once defined, a const variable/object is not
assigned to any other value in any way during program duration.

Hence, if “a” is declared as “int a”, value of a can be changed at different
times in the program.

However, if “a” is declared as “const int a”, once initialized it cannot be
changed again.

109. What does the keyword “volatile” mean in C language?

“volatile” keyword in C tells the compiler that the value of a variable
(declared as volatile) may change between different accesses and hence it
directs the compiler not to optimize anything related to the volatile variable.
volatile keyword is mainly used while interfacing with memory mapped
Input Output (Hardware). Once a variable is declared as volatile, compiler
can’t perform any optimizations like: removing memory assignments,
caching variables in registers, or changing the order execution of
assignments.

110. What is a pointer? Explain the concept of pointer.

Pointer is a variable whose value is an address of another variable. A pointer
contains direct address of a memory location. The asterisk sign * is used to

denote a pointer.

int *p ; tells the compiler that variable “p” is a pointer, whose value is an
address of a memory location where an integer variable is stored.
Similarly , float *f; tells the compile that variable “f” is a pointer, whose
value is an address of a memory location where a float variable is stored.

To understand this in detail, consider following snippet of a C code:
inta = 10;
int *b;
int c;
b = &a;
c = *b;
printf(“b=%d and c=%d\n”,b,c);

Here, value of variable “a” is 10. “&a” denotes memory address where value
of the variable ”a” is stored. Let us assume that variable “a” is stored at a
memory location “0x1000” (4096 in decimal).

Since pointer “b” is assigned address of “a”, value of variable “b” would be
“4096”. Further, variable “c” would be equal to value of variable “a”.
Therefore, output of above printf would be : b=4096 and c=1 0 .

Diagram below represents this example:

c| 10 b | 0x1000 al| 10

Memory Address M3 Memory Address M2 0x1000

0x1000 = 4096 decimal

111. Explain the concept of “Pass by Value” and “Pass by
Reference” in C?

Pass by Value : In this case, a copy of the “Value” of actual parameter is
made in the memory, and is assigned to a new variable. This means that any
changes made to the value of the new variable inside the function are local to
that function and doesn’t impact original value of the actual parameter.

Pass by Reference : In this case, a copy of the “Address” of actual
parameter is made in the memory and is assigned to a new variable. This is
used when the function makes changes to the variable which will then also
reflect in the original parameter value. Parameters that normally consume
more memory are normally passed by reference to avoid creating copies
local to function. Example: arrays are normally passed by reference.

For Example : In the code below, we have a function named
“’pass_by_value”, where we pass actual value stored in variable “c” (15) to
a local variable (named “a”) in the function. In this case, a new memory
location will be assigned for variable “a” and value of “15” will be stored in
that memory location. Any changes made to value of “a” inside the function
would ONLY change the value of variable “a”, and since “a” is stored at a
different memory location than “c”, value of Varlable won’t change.
Hence, output of first printf in the program will be “ 1. Valueof Cis 15 ”.
This is concept of Pass by Value.

Also, in the code below, we have a function named “pass_by_reference”, to
which we pass the memory address of the location where value of variable
“c” is stored. Here, we use an integer pointer (int *b) to capture the memory
location where value of an integer variable “c” is stored, and inside the
function we tell the compiler to add “5” to the value present at the memory
location captured in b (*b), which is nothing but value of variable “c” (as
variable “c” is stored at that memory location). Hence, output of second
printf in the program will be “ 2. Value of C is 2 0 . This is concept of Pass
by Reference.

“ »

#include<stdio.h>

void pass_by_value(int a){
a=atb;

}

void pass_by_reference(int *b){
*b = (*b)*5;

}

int main(){
int c=15;
pass_by_value(c);
printf(“1. Value of C is %d\n”,c);

pass_by_reference(&c);
printf(“2. Value of C is %d\n”,c);
return 0;

}

112. What is the Value and Size of a NULL pointer?

NULL pointer can be defined as : int *a = NULL;

Value of a NULL pointer is 0.

As we have seen through previous questions/answers, pointer is a variable
whose value is an address of another variable. Since, value of a pointer is an
address; size of a pointer would vary depending upon the machine. If it is
32-bit machine, pointer size would be 4 bytes and if the machine size is 64-
bit, size of pointer would be 8 bytes.

113. What is a linked list? How many different types of linked list
are there?

A Linked List is a data structure consisting of a group of nodes which
together represent a sequence. In a simplest form, each node is composed of
data and a reference (link) to the next node in the sequence. Following are
different types of linked lists:

1) Linear Linked List or One Way Linked List or Singly Linked List.

2) Two Way Linked List or Doubly Linked List.

3) Circular Linked List.

114. Of what order is the “Worst case” Time complexity of
following algorithms?
1) Linear Search
2) Binary Search
3) Insertion Sort
4) Merge Sort
5) Bucket Sort

Time complexity in simple terms can be thought of as: “How long does a
particular algorithm run?”. It is amount of time taken by an algorithm to run
as a function of input string length.

It makes a lot of sense to be able to estimate run time before starting an
algorithm/program to see if we are efficiently using all the resources. If a
program/algorithm takes lot of time to execute, we would be consuming a lot
more machine resources, which is costly.

Time complexity of an algorithm is expressed using Big O notation. In Big O
notation we exclude coefficients and lower order terms. For Example: If
time complexity of an algorithm is calculated to be equal to 5n* + 6n? + 1,
using Big O notation, we say that time complexity of the algorithm is O(n *)
[i.e. Order of n*]

Since performance of an algorithm may vary with different inputs of same
size, time complexity can be of three types: Best Case, Average Case and
Worst Case. We are often not interested in the best case time complexity. We
usually tend to compute “average case” or “worst case” time complexity.

For the common algorithms asked in this question, following are the worst
case time complexities:

1) OM)

2) O(log(N))

3) O(N?)

4) O(N*log(N))
5 OM)

Where, N = size of the list.

115. Of what order is the Space complexity of following
algorithms?
1) Linear Search
2) Binary Search
3) Insertion Sort
4) Merge Sort
5) Bucket Sort

Concept of space complexity is similar to the concept to time complexity
(mentioned above in previous answer) with the difference that: Space
complexity represents the total amount of storage space (memory) required
to execute a program or solve a problem with a particular algorithm. It is
also represented in Big O notation.

1) 0(1)
2) 0O()
3) O(N)
4) O(N)
5 OM)

Where, N = size of the list.

116. Explain the difference between “&” and “&&” operators in
C/C++?

& is a bitwise AND operator while && is a logical AND operator.
Logical operators work with boolean values - true (1) and false (0), and
return a boolean value.

Bitwise operators perform bit operation on each of the bit and return a bit
value.

Bitwise operator usage: if a =10 and b = 6, a & b will return 2 (4’b1010 &
4’b0110 = 4’b0010)
Logical Operator: If a=10 and b=6, then the following expression will return
true as it operates on two boolean values which are true in this example.

c = (a==10) && (b==6);

117. How does a “Structure” and a “Union” differ in terms of
memory allocation in C/C++?

Structs allocate enough space to store all of the fields/members in the struct.
The first one is stored at the beginning of the struct, the second is stored after
that, and so on. Unions only allocate enough space to store the largest field
listed, and all fields are stored at the same space. This is because in a union,
at a time only one type of enclosed variable can be used unlike struct where
all the enclosed variables can be referenced.

118. How much memory is allocated for struct ID below?
struct ID {
int IntID;
char CharID [8 |;

}J

12 Bytes (4 bytes are allocated for an integer and 8 Bytes for character array)

119. How much memory is allocated for union ID below?
union ID {
int IntID;
char CharID[8];

b

8 Bytes (8 Bytes for character array) [For Unions, Memory is allocated only
for the largest field]

120. Whatis a “Stack” and how does a “Stack” differ from
“FIFO”?

Stack is a data structure. Stack is “Last In First Out” whereas FIFO is “First
In First Out”.

121. What s a kernel?

A Kernel is a computer program that manages Input/output requests from
software and translates these requests into CPU instructions or other
electronic instructions for the computer.

122. What is UNIX and how is it different from Linux?

UNIX is basically an operating system (like windows). It is a multi-user,
multi-tasking system for servers, desktops and laptops. It is made up of three
parts: Kernel, Shell, and the Program. We have already seen what a kernel is
(previous question). Shell is an interface between the user and the kernel.
Both Linux and UNIX are operating systems. Linux is a free and open
source operating system, whereas different versions of UNIX have ditferent
costs based upon the vendors. Linux is developed by open source
development. Ubuntu is an example of Linux distributor whereas Solaris is
an example of UNIX distributor.

123. What does Perl stand for?

Practical Extraction and Reporting Language.

124. Perl is an interpreted language? What does this mean?

Perl is an interpreted language means that: it scans and translates the source
code taking one statement at a time, where it converts source code into an

intermediate code that can be interpreted by another program. It also means
that it doesn’t convert entire source code into a binary code (like a compiler

does). Perl continue source code translation till it meets first error and stops
further processing.

(Scalars | Préceded by $, scalars are simple variables. A scalar can be a

number, or a string or a reference.

CArrays . Preceded by @, arrays are ordered lists of scalars. Index for arrays

start from O.

(Hashes T Preceded by %) hashes are unordered sets of keys/value pairs that

can be accessed using keys as subscripts.

A Cron Job is a time based job scheduling in an operating system. It allows
you to automatically run your jobs periodically at specified times, dates,
days, intervals, etc.

For Example: Say a user has a Shell or a Perl script that calculates per-
person disk space usage for a disk in UNIX/Linux. Setting a Cron job in
UNIX/Linux for this script with specified frequency (or time) would ensure
that this script runs automatically at scheduled times (or frequencies) without
the user having the need to manually run it every time.

127. What is the use of “rsync” command in UNIX/Linux?

“rsync” stands for “Remote Sync”, and it is a commonly used command for
copying or synchronizing files/directories across disks, networks, servers,
and machines. rsync minimizes the amount of data required to be copied as it
moves only those portions of the files that have changed. “rsync” also
consumes less bandwidth as it uses some compression and decompression
methods while sending and receiving the data. One of the most common use
of “rsync” command is to perform data backup and mirror disks between
two machines.

128. Variable names in C can contain alphanumeric characters as
well as special characters? True or False?

False

129. Whati s the use of a ‘\0' character in C/C++?

It is terminating null character and is used to show the end of a string.

130. What are binary trees?

Binary trees are an extension of the concept of linked lists. A binary tree has
two pointers: “a left one” and “a right one”. Each side can further branch to
form additional nodes which each node having two pointers as well.

131. How can you generate random numbers in C?
Srowmol (tme (0))

Usin g rand() function and includin g <stdlib.h > header file.
In general terms, concept of random number generation is important for
testing a particular program/code for wide range of inputs to see if the code
is working properly for various different inputs . rand() help randomizing
input conditions and generating random inputs for testing a code.

132. What are Special Characters, Quantifiers, and Anchors w.r.t
regular expressions?

Special Characters are meta-characters that give special meaning to the
syntax of regular expression search. Example: \, A, $, (), [1, |, &
Quantifiers specify “how often” we match a preceding regular expression.
Example: *, +, ?, {}

Anchors specify “where” we match. Anchors allow a user to specify
position for text/pattern search. Example: A, §, <, >

3.2 Object Oriented Programming Concepts

133. What is the difference between a class and object?

A class is a set of attributes and associated behaviour that can be grouped
together. An object is an instance of the class which then represents a real
entity with attributes and behaviour . The attributes can be represented using
class data members while the behavior can be represented using methods.
For Example: An animal can be represented as a class while different
animals like dog, cat, etc., can be objects of animal class.

134. What is the difference between a Class and a Struct in C++?

A “struct” was originally defined in C to group different data-types together
to perform some defined functionality. However, in C++ this grouping was
extended to include functions as well. A “class” is also a data type that can
group different data types and functions operating on a defined functionality.
The only real difference in C++ is that all members of a class are private by
default, whereas all members of a struct are public by default.

What is the difference between a Class and a Struct in
SystemVerilog?

In SystemVerilog, both class and struct are used to define a bundle of data
types based on some functionality to be performed. However, a struct is an
integral type and when it is declared, the necessary memory is allocated. On
the other hand, a class is a dynamic type and once you declare a class, you

only have a class handle referenced to null. Memory allocation happens only
when an actual object of the class is created.

136. What are public, private and protected members?

These are different access attributes for class members.
1) Private data members of a class can only be accessed from within
the class. These data members will not be visible in derived classes
2) Public members can be accessed from within the class as well as
outside the class also. These are also visible in derived classes
3) Protected data members are similar to private members in the
sense that they are only accessible within the class. However unlike
private members, these are also visible in derived class.

137. What is Polymorphism?

Polymorphism means the ability to assume several forms. In OOP context,
this refers to the ability of an entity to refer to objects of various classes at
run time. This is possible with the concept of inheritance and virtual
functions in SystemVerilog (and with the concept of function and operator
overloading, which are present in C++). Depending on the type of object,
appropriate method will be called from the corresponding class.

138. What are Method Overriding and Method Overloading?
What is the difference between the two?

Method overloading is the ability of the functions with same names to be
defined multiple times with different set of parameters.
For Example: A function add() can be defined in three formats as shown
below. Based on the type and number of arguments passed when the function
is called, the correct definition will be picked up.

1) function add (int operand1 , int operand?);

2) function add (int operand1 , int operand?2 , int operand3)

3) function add (float operand1 , float operand2)

Method overriding is the ability of the inherited class redefining the virtual
method of the base class. Method overriding is supported in most of the
object oriented programming languages.

However, unlike C++, method overloading is not supported in
SystemVerilog language. SystemVerilog language only supports method
overriding in terms of virtual methods and derived classes. For Example: A
base class can define a function called compare() which compares two data
members of its class as follows
class BaseClass;
inta, b;
virtual bit function compare ();
if (a==Db) return 1;
endfunction
endclass

A derived class can override this definition based on new data members as
shown below:
class DerivedClass extends BaseClass;
int c;
function compare ();
if (a==b)&& (a==c))return 1;
endfunction
endclass

139. What is operator overloading?

In object oriented programming, operator overloading is a specific case of
polymorphism, where different built-in operators available can be redefined
or overloaded. Thus a programmer can use operators with user-defined types
as well.

This is supported in C++ while not supported in System Verilog.

Following examples shows a Testclass where the operator + is overloaded
such that two class objects of type “Testclass” can be added. The
implementation then adds the data members from two objects and assigns it
to the data member of result class.
#include <iostream>
class Testclass {
public :
inta;
int b;
Testclass operator +(const Testclass & obj);

}

Testclass Testclass :: operator +(const Testclass & obj2){
Testclass tmp_obj = * this ;
tmp_obj . a=tmp_obj.a+ obj2.a;
tmp_obj . b =tmp_obj.b + obj2.b;
return tmp_obj ;

}

int main (void){
Testclass obj1 , obj2 , obj3 ;

objl.a=1;
objl.b=1;
obj2.a=2;
obj2.b=2;
obj3.a=0;
obj3.b=0;

obj3 = obj1 + obj2 ;
std :: cout << obj3.a<<" " <<obj3.b<<"n";
return O ;

}

140. What is a constructor method?

Constructor is a special member function of a class, which is invoked
automatically whenever an instance of the class is created. In C++, it has the

same name as its class. In SystemVerilog, it is implemented a s new()
function.

141. What is destructor?

Destructor is a special member function of a class, which is invoked
automatically whenever an object goes out of the scope. In C++, it has the
same name as its class with a tilde character prefixed while in
SystemVerilog, there is no destructor as the language supports automatic
garbage collection.

142. What is the difference between composition and inheritance
in OOP?

Composition uses a “has - a“ relationship between two classes. When a class
instantiates object of another class, the relationship is “ has-a ” and this
property is called composition.

Inheritance uses a “ is - a ” relationship between two classes. When a class
derives from another class, the relationship is a “ is-a ” and this property is
called inheritance.

Following diagram illustrates this. If there is a bas e classcar anda class
for d is derived from this, then the relationship is “is - a”, meaning the ford
class is a car class.

If the ford class has an object of engine class inside, then the relationship is
HAS-A as shown in the diagram.

|
| class car ‘
. :
“Is-a”
class ford | “has-a"
(“is" derived from car class) | HAC class engine

(‘has” instantiation of object
from engine class)

143. What is the difference between a shallow copy and a deep
copy used in object oriented programming?

In a Shallow copy, a new object is created that has an exact copy of the
values as in the original object. If any of the fields of the object are
references to other objects, just the reference addresses are copied (handles).
In a Deep copy, a new object is created that has exact copies of the values as
in the original object. If any object has references to other objects, a copy of
all values that are part of it are also copied and not just the memory address
or handle. (Hence, known as deep copy)

For Example: Consider the following two classes A and B:
class A;
int a;
int b;
endclass

class B;
int c;
A objA;
endclass

If a shallow copy method is implemented in class B, then when we copy B to
a new object, only the memory handle of “objA” is copied over. In case of a

deep copy, all values of A (namely its data members - a and b) are also
copied and not a memory handle of “objA”.

144. What are virtual functions in C++ or other OOP languages?

A virtual function is a member function that is declared within a base class
and can be re-defined by a derived class. To create a virtual function, the
function declaration in the base class is preceded by the keyword virtual.
This way of re-defining a base class function in a derived class is also known
as method overriding.

145. What is meant by multiple inheritance?

Multiple inheritance is a feature of some object-oriented computer
programming languages in which an object or class can inherit
characteristics and features from more than one parent object or parent class.
It is distinct from single inheritance, where an object or class may only
inherit from one particular object or class. Note: C++ supports multiple
inheritance while SystemVerilog language doesn’t.

146. What is an abstract class?

Abstract classes are classes that contain one or more abstract methods. An
abstract method is a method that is declared, but contains no
implementation. Abstract classes may not be instantiated, and require
subclasses to provide implementations for the abstract methods. In
SystemVerilog, the class name is prepended with a virtual keyword to make
it an abstract class.
Following is an example of how an abstract class is defined with function
defined as virtual. The derived classes can then actually implement this
function.

virtual class BaseShape;

virtual function int get_num_edges ();

endfunction
endclass

class Rectangle extends BaseShape;
function int get_num_edges ();
return 4 ;
endfunction
endclass

147. What are static methods inside a class?

Static methods are methods defined inside a class using static keyword.
These can be used without creating an object of the class. Also if there are
multiple objects created of this class, there will still be only one static
method which will be part of all objects.

148. What is ¢ this’ pointer with reference to class?

this pointer is a special pointer that can be used to reference the current
object of a class inside the class scope.

149. What is type conversion and type-casting in programming
languages?

Type conversion and Type casting are different ways of changing one data
type to another in a programming language.

A type conversion is an implicit conversion from one form to another, while
a type casting is an explicit conversion.

For Example: if we have an int and a floating point variable as below and if
we assign the floating point to an integer, the compiler implicitly does a type
conversion.

int a;
double b;
a=b;
In type casting , the programmer does an explicit conversion as shown

below:

double a = 2.2

double b = 3.3;

intc =(int)a+ (int)b; //In this case the decimal values will be
truncated and we get a result of c=5

3.3 Programming questions

3.3.1 UNIX/Linux

150. How can you find out details regarding what a UNIX/Linux
command does?

man <command-name>
Example: man grep

151. Write a UNIX/Linux terminal command: (assume filename =
file.txt)
1) To display first 10 lines of a file
2) To display the 10th line of a file
3) To delete 13th line from a file
4) To delete last line from a file
5) Toreverse a string (ex: “Hello”)
6) To check if the last command was successful
7) To find number of lines in a file
8) To find number of characters in a file
9) To find number of characters on 17th line in a file

1

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)

10) To get 3rd word of 17th line in a file

11) To change permission of a file to “Read” and
“Executable” for all users.

12) To change group access permissions of a file to a
group. (assume new group name as “new_group”)

13) To move content to two files (filel.txt and file2.txt)
into one file(file.txt)

14) To display all the processes running on your name
15) To uniquely sort contents of a file (filel.txt) and
copy them to another file (file2.txt)

16) To check the username

17) To login to a remote host (say “remote-server”)

Any of the following would work:
a) head -10 file.txt
b) cat file.txt | head -10
c¢) sed “11,$ d” file.txt
head -10 file.txt | tail -1
sed -i “13 d” file.txt
sed -i “$ d” file.txt
echo “Hello” | rev
echo $?
cat file.txt | wc -1
cat file.txt | wc -
head -17 file.txt | tail -1 | wc -c
head -17 file.txt | tail -1 | cut -f3 -d”
chmod 555 file.txt
chgrp new_group file.txt
cat filel.txt file2.txt > file.txt
ps -aef
sort -u filel.txt > file2.txt
whoami
ssh username@remote-server

152.

1
2)
3)
4)
5)
6)
7)

153.

Write a UNIX/Linux terminal command to display following
from a file (assume filename = file.txt):

1) All lines that contain the pattern “cat”

2) All lines that contain the word “cat”

3) All lines that doesn’t contain the word “cat”

4) All lines that contain the word “cat” (case in-sensitive)

5) All lines that start with pattern “cat”

6) All lines that end with pattern “cat”

7) All lines that contain patterns “cat” and “123” (with pattern
“cat” appearing before pattern “123”)

grep “cat” file.txt

grep -w “cat” file.txt
grep -v -w “cat” file.txt
grep -1 “cat” file.txt
grep “/cat” file.txt
grep “cat$” file.txt
grep “cat.*123” file.txt

Write a UNIX/Linux terminal command to list out names of
all files in a directory (say /usr/bin/dir/) (and its
subdirectories) that contain case insensitive pattern “I am
preparing for Interview”.

grep -ilr “I am preparing for Interview” /usr/bin/dir/*

154.

A file (say /usr/home/file.txt) contains a list of directories.
Write set of UNIX/Linux commands that looks at contents of
this file, goes to each directory and runs a process (say
script.pl). Assume that each line of the file
(/usr/home/file.txt) contains path to only one directory.

foreach x ("cat /usr/home/file.txt")
foreach> cd $x

foreach> script.pl
foreach> end

155.

Write a UNIX/Linux terminal command that moves all non-
blank lines from a file (filel.txt) to another file (file2.txt)

grep -v “A$” filel.txt > file2.txt

156.

1Y)
2)
3)
4)
5)
6)
7)

157.

Write a UNIX/Linux terminal command to (assume filename
= file.txt wherever applicable):

1) Find if a file exists in current directory or its sub-directories
2) Find if a file exists in a directory “/usr/bin/DIR” or its sub-
directories

3) Find if a file exists in current directory only

4) Find if a file containing a specific word “dummy” in its
name exists in current directory or its sub-directories

5) Find if a file with case insensitive name “file” exists in
current directory or its sub-directories

6) Find all the files whose names are not “file.txt” and are
present in current directory or its sub-directories

7) Rerun previously executed find command

find . -name “file.txt” OR find -name “file.txt”
find /usr/bin/DIR -name “file.txt”

find -maxdepth 1 -name “file.txt”

find . -name “*dummy*”

find . -iname “file”

find -not -name “file.txt”

! find

Write a UNIX/Linux command to:
1) List all the Cron Jobs set on your name on a machine
2) List all the Cron Jobs set up by a user on a machine

1
2)
3)
4)
5)
6)

0

8)
9)

3) Remove all the Cron Jobs set on your name on a machine
4) Remove all the Cron Jobs up by a user on a machine (If you
have permissions to do so)

5) Edit a Cron Job on your name on a machine.

6) Set up a Cron Job that runs every day at 6:30PM

7) Set up a Cron Job that runs every minute.

8) Set up a Cron Job that runs first 20 days of every month at
6:30AM

9) Set up a Cron Job that runs only on a Friday every month at
times 6:30AM and 6:30PM

Seepme) nunte lowr
crontab -1
crontab -u <user_name> -1 day yf Mewvth

crontab -r

crontab -u <user_name> -r ioe~th

crontab -e O oo C;f weple
30 18 * *% <command_to_invoke_your_process>

* * X <2command _to_invoke_your_process>

306 1- 2()_) *(*Qcommand to_invoke_your_process>
30 6,18 %* 6 <command to_invoke_your_process> (assuming

Sunday is represented by 0)

158.

1
2)
3)
4)

Mention shell hot keys that does following:

1) Kills a process

2) Moves a process running on a terminal to the background
3) Moves cursor to the beginning of a command at the shell
4) Moves cursor to the end of a command at the shell

Ctrl + ¢
Ctrl + z
Ctrl +a
Ctrl +e

3.3.2 Programming in C/C++

159. Write a C code to detect if underlying architecture in a
machine is little Endian or big Endian.

Let’s assume we have 32-bit machine.
If we have an unsigned integer 1, it would be stored in following format in
Little Endian machine:

e bt RS BT
|0x01|0x00 | 0x00 | 0x00 |
e it e

(LSB Memory Address) (MSB Memory Address)

And in following format in Big Endian machine:
e it e

| 000 | 0x00 | 0x00 | 8x01|

e e e
(LSB Memory Address) (MSB Memory Address)
#include <stdio.h>
int main ()
{

unsigned inti = 1;
char * ¢ = (char *)& i;
if (*c)

printf ("Little Endian \n");
else

printf ("Big Endian \n");
return O;

}

160. What will be the value of b and c in following code?
a=10;
b=a++;
Cc=++a;

b will have a value of 10 and ¢ will have a value of 12.

The post-increment operator will make the increment only after assignment
and hence b sees the value of a before increment. A pre-increment operator
will first make the increment and hence a will be incremented from 11 (a
changes to11 after assignment of b=a++) to 12

161. What would be the output of following C program?
#include <stdio.h>
int xyz = 10;
int main () {
int xyz = 20;
printf ("%d" , xyz);
return O;

}

The variable xyz is defined with both global and local scope. When printed
in the function, the one with the local scope is printed and hence it will print
a value of 20.

162. Find the Value of "y" in the following C code:
int main () {
intx=4;
float y = * (float *) & x ;
return O ;

}

Very Small Value . Some compilers may show answer as O.

Following is the concept: “(float *) &x”, tells compiler that pointer is to a
float number stored at a memory location. Once we dereference this i.e. “*
(float *) &x”, this would imply: “value of a float number stored at a
memory location”. Floats are stored differently from integer (as for float
numbers, bit [31] represents the signed bit, bits [30: 23] represent the
exponent and bits [22:0] represent the fraction). Hence 4.0 would become

very-very small value when interpreted as a float
(00000000000000000000000000000100).

163. What will be the output of the following C program?
#include<stdio.h>
int main ()
{
inti=0;
for(i=0;i<20;i++)
{
switch (1) {
case 0 :1+=5;
case 1 :1+=2;
case 5:1+=5;
default: i += 4;

break;
}
printf ("%d\n" ,i);
}
return 0;
}
Answer:
16
21

This question is bit tricky. To understand the answer better, let us iterate over
the “for” loop step by step. When the integer variable “i” is equal to 0, “case
0” will execute and it will change the value of integer variable “i” to 5.
Since, there is NO break statement after “case 0”, “case 1” will be
executed and this will change the value of “i” to 7. Similarly “case 5” and
“default” cases will also be executed and “i” will become 16 (5+2+5+4)
when the first break statement after “default” case is encountered. Hence,
“16” will be printed in the first iteration. Now, integer variable “i” will
increment to “17” (as a result of i++ present as part of “for” loop). Since, “i”

€3
1

is 17, “switch” will choose “default” case and
become “21”, and this will also be printed.

will increment by “4” to

164. Write a recursive function to find out factorial of a number
“n” where n is always >=0.

int factorial (int x)

{
f((x==0)(x==1))
return 1;
else
return (x * factorial (x-1));
}

165. Generate a Fibonacci series using a recursive function.

int fibonacci (int num)
{
if((num==0)[(num==1))
return num;
else
return (fibonacci (num - 1) + fibonacci (num - 2));

}

166. What is the output of this C code when run on a 64-bit
machine?

#include <stdio.h>

int main ()

{
int x = 10000 ;
double y = 56;
int *p = &x;
double * q = & y;

printf ("p and g are %d and %d" , sizeof (p), sizeof (q));
return O;

}

p and q are 8 and 8
Since “p” and “q” are pointers, they are nothing but addresses in a 64-bit
machine. Size of both would be 64 bits (8 bytes), irrespective of whether

they point to an integer or a double data type.

167. What is a Linked List and when would you prefer to use
linked lists?

As we have already seen in previous section, a Linked List is a data structure
consisting of a group of nodes which together represent a sequence. In a
simplest form, each node is composed of data and a reference (link) to the
next node in the sequence.

Linked lists are preferred when we don’t know the volume of data to be
stored. For example: we can use linked lists in an employee management
system, where we can easily add record of a new employee (addition of a
new node - dynamic memory allocation), delete record of an old employee
(removal of a node), edit record of an employee (editing data in a node).

For Questions 168 to 172: Using the variables and declarations given
below:

struct node;
typedef struct node NODE;
typedef int Element;

//' A pointer to a node structure
typedef NODE * LINK;

// A node defined as having an element of data
// and a pointer to another node

struct node {
Element elem;
LINK next;

}J

// The Head or start of the List
typedef struct
{
int size;
LINK start;
} ListHead;

168. Write a C function to create a singly linked list.

For creating a singly linked list, we need to:
1. Create HEAD (h) of the linked list,
2. Initialize the size of linked list (to zero), and
3. Point the start pointer to NULL (as linked-list is empty at the time of
creation).
Refer to following function for creating a singly linked list:

ListHead createList () {
ListHead h;
h.size = 0;
h . start = NULL;
return h;

}

169. Write a C function to Insert an Element at the head of a
singly linked list.

When an element (e) has to be inserted at the HEAD of a linked list (h), we
need to:
1. Dynamically allocate memory for a new NODE,

Assign value to the element in the new NODE,

. Point the “next” pointer in the new NODE to the NODE which HEAD

was previously pointing to, and
In the linked list HEAD, increment the “size” variable (as new NODE
is added) and point the “start” pointer to the new NODE.

ListHead InsertElementAtHead (Element e , ListHead h) {
LINK nl = (LINK) malloc (sizeof (NODE));
nl -> elem = e;
nl -> next = h . start;

h . start = nl;
h . size ++;
return h;
}

170. Write a C function to Insert an Element at the tail of a singly
linked list.

When an element (e) has to be inserted at the tail of a linked list (h), we need

to:

No

Dynamically allocate memory for a new NODE,

. Assign value to the element in the new NODE,
. Point the “next” pointer in the new NODE to NULL (as new NODE

represents the tail of the linked list),

If Linked list is initially empty, point the “start” pointer in HEAD to
new NODE, else traverse Linked List to find out the last NODE in the
linked list and point the “next” pointer in the last NODE to new
NODE.

. Increment the “size” variable (as new NODE is added) in the linked

list HEAD.

ListHead InsertElementAtTail (Element e , ListHead h) {
LINK temp;
LINK nl;
nl =(LINK) malloc (sizeof (NODE));

nl -> elem = e;

nl -> next = NULL;

if (h. start == NULL)
h . start = nl;

else

{
temp = h . start;
while (temp -> next != NULL)
temp = temp -> next;
temp -> next = nl;

}
h . size ++;
return h;

}

171. Write a C function to Insert an Element at position “pos” in
a singly linked list.

When an element (e) has to be inserted at a position (pos) in a linked list (h),
we need to:

1. Dynamically allocate memory for a new NODE,

2. Assign value to the element in the new NODE,

3. If “pos” is more than the size of linked list, return an error message (as
this is not possible). Else if “pos” is “0”, insert the element at head (as
seen above). Else, traverse through the linked list to the NODE just
before “pos”. Point “next” pointer in the new NODE to the NODE
which NODE at “pos-1” was pointing to and point “next” pointer in
NODE at “pos-1” to new NODE. Remember that “count” starts from
0.

4. Increment the “size” variable (as new NODE is added) in the linked
list HEAD.

ListHead InsertAtPos (Element e , ListHead h , int pos) {
LINK temp;
LINK nl;

nl =(LINK) malloc (sizeof (NODE));
nl -> elem = e;
int count = 0;
if (pos > h . size) {
printf ("Error: Wrong position \n");
return h;
}
if (pos==0) {
nl -> next = h . start;
h . start = nl;
}
else {
for (temp = h . start ; count <(pos - 2); temp = temp -> next ,
count ++) ;
nl -> next = temp -> next;
temp -> next = nl;
}
h . size ++;
return h;

}

172. Write a C function to Delete an Element from a singly linked
list.

When an element (e) has to be deleted from a linked list (h), we need to:

1. Check if linked list is empty. If it is empty, we need not delete
anything.

2. If linked list is not empty, we need to traverse through the linked list to
find the NODE which contains the element (e). After finding the
NODE, we need to change the “next” pointer in the NODE just before
the NODE to be deleted to point to the value present in the “next”
pointer of the NODE to be deleted.

3. Decrement the “size” variable (as a NODE is deleted) in the linked list
HEAD.

ListHead DeleteElement (Element e , ListHead h) {
LINK cur, prev;
cur = h . start;
if (cur == NULL)
{
printf ("Empty List \n");
return h;

}
while (cur != NULL)

{
if (cur -> elem == e)
{
if (cur == h . start)
h . start = cur -> next;
else
prev -> next = cur -> next;
free (cur);
h . size --;
break;
}
prev = cur;
cur = cur -> next;
}

return h;

}

3.3.3 Programming in PERL

173. What will be the output of following Perl code
my @value_array = (" Index0 "," Index1 ");
my $value;
foreach $value (@value_array) {

$value =~ s / Index //;

}

print " @value_array \n ";

Answer: 0 1
Value at Array Index will change if we use foreach and substitute scalar
“$value”

174. 'What will be the output of following Perl code
my @value_array = (" Index0 "," Index1 ");
my $value;
for (my $i = 0 ; $i < @value_array ; $i ++) {

$value = $value_array [$i |;
$value =~ s / Index //;

}

print " @value_array \n ";

Answer: Index0 Index1
$value is local to for loop.

175. What is the importance of using -w and “use strict” in perl?

-w is used to flag warnings. It warns about the potential to misinterpret
syntax located in the script. A good code ideally should not have any
warning.

strict will check the definition and the usage of variables in the script. This
is considered a step above the -w command, and can be invoked using the
“use strict” command. This stops the execution of the script instead of just
giving warnings, when there are any ambiguous or unsafe commands in the
script.

176. 'What will be the output of following Perl code?
my $line_in_a_file = " I am preparing for an Interview ";
my $line_in_a_file =~s/a/A/;
print " $line_in_a_file\n ";

First occurrence of “a” will be replaced by “A” and hence the print will
display “I Am preparing for an Interview”

177. 'What will be the output of following Perl code?
my $line_in_a_file =" I am preparing for an Interview ";
my $line_in_a_file=~s/a/A/g;
print " $line_in_a_file\n ";

All occurrences of “a” will be replaced by “A” as we are using “g” (global)
in the substitution command. Hence the print will display “I Am prepAring
for An Interview”

178. How would you concatenate two strings to form a single
string in Perl? Fill in the blank (__?_).
my $stringl = " I am preparing ";
my $string2 = " for an Interview ";
my $string = __ ?
A “.” concatenates two strings in Perl. Hence, answer for above question
will b e $string1.$string2;

179. What is the output of following program?
#!/usr/bin/perl
use warnings;
use strict;
my $scalar = 0;
my @array = ("A","B","C","D");
$scalar = @array;
print "Scalar is $scalar\n";

Scalar will store the number of entries in the array. Hence, it will print a
value of 4.

180. Mention different special characters that give a special
meaning to the “regex” search syntax. Explain use of each.

\ Escape character. Makes the meta-character a literal
A Specifies start of a string/line

$ Specifies end of a string/line

. Match any character except a newline

* Match zero or more quantifier

+ Match one or more quantifier

- indicates range in a character class (like a-z)

& Substitute complete match

() Grouping characters

[1 Character class to match a single character

{} Range quantifiers

<> Anchors that specify left or right word boundary
? Match zero or one quantifier

| Specifies series of alternatives/choices.

181. List some Quantifiers in regular expressions with their use.

* Match any number of thing(s) it follows (zero or more)

+ Match one or more thing(s) it follows.

? Match zero or one time the thing it follows.

{N} Match N number of thing(s) it follows.

{N,} Match at-least N number of thing(s) it follows.

{N,M} Match at-least N and at-max M number of thing(s) it follows.

182. List some Anchors in regular expressions with their use.

A Match the regular expression from the start of a string/line
$ Match the regular expression at the end of a string/line

< Match the regular expression at the start of a word.

> Match the regular expression at the end of a word.

\b Boundary between a word and a non-word.
\B No Boundary between a word and a non-word.

For Questions 183 to 187: Consider the following code and fill in the
blank (__?_) based upon the questions that follow:

#!/usr/bin/perl

use warnings;

use strict;

my $input_file = "input_file.txt";
my $output_file = "output_file.txt";
my @input_array;

open (OUTPUT_FILE , >', $output_file) or die "Cannot Open
$output_file file for writing\n$!\n";

open (INPUT_FILE , '<', $input_file) or die "Cannot Open
$input_file for reading\n$!\n";

while (< INPUT_FILE >){
if($ =~/ 2 /)
print OUTPUT _FILE $_;
}

}
close INPUT_FILE;

close OUTPUT _FILE;

183. To copy all the lines containing only lowercase alphabets (a
to z) in input_file.txt to output_file.txt

Answer: A[a-z]+)$

184. To copy all the lines containing only lowercase or uppercase
alphabets (a to z or A to Z) in input_file.txt to output_file.txt

Answer: N([a-zA-Z]+)$

185. To copy all the lines containing either lowercase/uppercase
alphabets (a to z or A to Z) or digits (0 to 9) in input_file.txt
to output_file.txt

Answer: g(la=zA=Z0=9H$

186. To copy all the lines containing $ in them.

Answer: \$

187. To copy all the lines containing only \ or $ in them.

Answer: A[\$]+)$

188. What is the use of the functions chop() and chomp() in Perl?

chop() : chop() function removes the last character of a string and returns
that character.

chomp() : chomp() function is an alternative to chop() function. It is most
commonly used to remove trailing newline from a string. In general,
chomp() function uses Input Record Separator: $/
($INPUT_RECORD_SEPARATOR) to figure out what to remove from the
end of the string.

This function returns the number of the characters removed.

189. What will be the output of the following Perl code?
#!/usr/bin/perl
use warnings;
use strict;

my $example_1 =" chop_example ";
my $example_2 = " chop_example ";
chop ($example_1);

my $b = chop ($example_2);

print " $example_1 AND $b\n ";

The print statement will display : chop_exampl AND e

chop() removes the last character of the string and returns that character.
Therefore, chop($example_1) will remove “e” from $example_1.
chop($example_2) will again remove “e” and since scalar “b” is assigned to
chop($example_2), return value (“e” in this case) will be assigned to $b.

190. What will be the output of the following Perl code?
#!/usr/bin/perl
use warnings;
use strict;
my $example_1 =" chomp_example\n ";
my $example_2 =" chomp_example\n ";
chomp ($example_1);
my $b = chomp ($example_2);
print " $example_1 AND $b\n ";

This will print : chomp_example AND 1

chomp() will remove newline character (\n) from both $example_1 and
$example_2.

It will also return the number of characters removed. Since, scalar “b” is
assigned to chomp($example_2), “$b” will contain 1 [as one character (\n)
was removed by chomp()]

Chapter 4: Hardware Description Languages

Hardware Description Languages (HDL) are programming languages used
to model behavior of digital logic circuits independent of any underlying
implementation technology. VHDL and Verilog were the two popular HDLs
used for digital logic design and in the recent years SystemVerilog (which is
a super set of Verilog) became more widely adopted as it supports object
oriented programming concepts and several other features which are very
useful for implementing testbenches that are used to verify designs.

This section consists of questions in Verilog and System Verilog that cover

both the digital logic design modelling as well as testbench modelling
concepts.

4.1 Verilog

191. What is the difference between blocking and nonblocking
assignments in verilog?

Verilog language supports two types of assignments: blocking and

nonblocking. In blocking assignments, evaluation and assignment happens

immediately. Thus, if there are multiple blocking assignments in a sequential

block, each statement execution follows in a blocking way as shown below.
always @(posedge clk) begin

x =a|b;
y =a & b;
z=xy;
end

In this example, each statement uses blocking assignments and the values of
a and b are evaluated and assigned to x and y immediately as the statements
execute in order. Hence, in third statement, the new values of x and y are
evaluated and assigned to z.

In nonblocking assignments, all assignments are deferred until end of current
simulation tick. Hence, evaluation of entire RHS (Right Hand Side) happens
first and only then assignment to LHS happens.
always @(posedge clk) begin
x <=a|b;
y <=a & b;
z<=x|y;
end
In this example, the RHS of each of the three statements are evaluated first
and only after that the assignments to each of LHS (left hand side) happens.
Hence, you can notice that in this case, the old values of x and y are OR’ed
and assigned to z.

192. How many flip-flops will be needed when following two
codes are synthesized?
1)
always @(posedge clk) begin
B=A;
C =B;
end
2)
always @(posedge clk) begin
B <=A;
C <=B;
end

1) One Flip-flop

2) Two Flip-flops

In first case, blocking assignments are used and hence the value of A will be
assigned to B and the new value will be reflected onto C in same cycle and
hence the variable B and C results in a wire. So, only one flip flow will be
needed.

In second case, old value of B is sampled before the new value is reflected in
each cycle. Hence value of A reflects to C only in 2 cycles, resulting in two
flip-flops.

193. What will be the output of a in below code?
always @(posedge clk) begin
a=0;
a<=1;
$display ("a=%0b" , a);
end

This is because the nonblocking assignment will only reflect at end of cycle,
while display will use the current value. Hence, a=0 will be printed.

194. Write a verilog code to swap contents of two registers (A and
B) without any temporary register?

Using a nonblocking assignment will swap the two values as shown below:
always @(posedge clk) begin
A <= B;
B <=A;
end

195. What is the output of following code?
module test;
int alpha , beta ;
initial
begin
alpha = 4;
beta = 3;
beta <= beta + alpha;
alpha <= alpha + beta;
alpha = alpha - 1;
$display ("Alpha=%0d Beta=%0d" , alpha , beta);
end
endmodule

Note that these assignments are inside an initial begin block without any
clocking constructs. The nonblocking assignments will have no effect. Only
the blocking assignment of “ alpha=alpha- 1 ” will have effect before the
display.

Hence answer will b e Alpha=3 Beta=3

196. What will be the value of “c” in following 2 cases (after 5 sim
units)?
1)
initial begin
a=0;b=1;
c = #5 a+b;
end
2)
initial begin
a=0;b=1;
#5 c = a+b;
end
initial begin
a=0;
#3 a=1;
end

1) c=1 after 5 sim units

2) c=2 after 5 sim units
In first case, both a and b are evaluated at time=0, a+b is computed but
assignment happens after 5 time units. This is also known as transport
delay.
In second case, both a and b are evaluated after 5 time units and a+b is
assigned to c in the same time unit. Since, a changed to 1 after 3 units (as per
second initial block), we get c=2 at end of 5 time units. This is known as
inertial delay.

197. Analyze following code and find what is wrong with this code
that implements a combinational logic?
bita,b,c,d,e;
always @(a, b, c) begin
e-a&b&c&d;
end

A sensitivity list is a list of signals that trigger execution of the block when
they change values. Since, signal “d” is missing in the sensitivity list, this
can cause evaluation of “e” to be not triggered on any changes in “d”. This
will cause simulation results to look wrong even though synthesis results
would be correct.

198. Write a Verilog module for the 3:1 multiplexer that uses the
"?:" (conditional operator)

A 3:1 multiplexer has 3 input lines, 2 select lines and an output line which is
driven by one of input lines based on select inputs.

module mux31_2 (inp0, inp1, inp2, sel0 , sell, outres);
input inp0 , inp1 , inp2 , sel0, sell ;
output outres ;
assign outres = sell ? inp2 : (' sel0 ? inp1 : inp0);
endmodule

199. What will be the value of X1 and X2 which are modelled
using following two always blocks. What is wrong with
following coding style?

always @(posedge clk or posedge reset)
if (reset) X1=0;// reset
else X1 = X2;

always @(posedge clk or posedge reset)
if (reset) X2 =1;// set
else X2 = X1;

The Verilog simulators don’t guarantee any execution order between
multiple always blocks. In above example, since we are using blocking
assignments, there can be a race condition and you can see different values
of X1 and X2 in multiple simulations. This is a typical example of what a
race condition is. If the first always block gets executed before second
always block, we will see X1 and X2 to be 1. If the second always block gets
executed before first always block, we will see both X1 and X2 to be zero

200. What is the difference between synchronous and
asynchronous reset and how do we model synchronous and
asynchronous reset using verilog code?

A reset is used to force the state of a design to a known condition after
powering up. If a design samples reset on an edge of clock, then it is called
as synchronous reset. If the design samples the reset signal without any
clock then it is called an asynchronous reset.
In terms of implementation, following coding style is used for a synchronous
reset
always @ (posedge clk) begin
if (reset) begin
ABC <= 0;
end
end
Following coding style is used for an asynchronous reset wherein the reset
has highest priority and can happen even without a clock.
always (@ (posedge clk or posedge reset) begin
if (reset) begin
ABC <= 0;
end
end

201. What is the difference between “==” and “===” operators?

C—_2»

Both of these are equality or comparison operators. The tests for

logical equality for two states (0 and 1), while the “===" operator tests for
logical equality for four states (0, 1, X and Z)

If “=="is used to compare two 4-state variables (logics) and if at least one of
them has an X or Z, the result will be X. If the “==="is used to compare two

4-state variables, then comparison is done on all 4 states including X and Z,
and the result is O or 1.

202. If A and B are two 3-bit vectors initialized as follows:
A =3'b1x0
B =3 'b1x0
What would be value of following?
1) A==
2) A===

1) A==B will only compare non-X/Z values and hence will result
in an output “X” if any of the operands has an unknown bit

2) A===B will compare bits including X and Z and hence the
comparison would return a 1 as both bit 1 are X for A and B.

203. Write verilog code for a flip-flop and latch and explain
differences?

For a flip-flop, the output changes only on the rising or falling edge of a
clock signal even if input signal changes in between. However for a latch
the output changes as soon as input changes provided the enable signal is
high.

Following is the Verilog code for a D flip-flop with synchronous reset.

always @ (posedge clk) begin
if (reset) begin
Q<=0;
Qbar <=1;

end else begin
Q<=D;
Qbar<=~D;
end
end

Following is the Verilog code for a latch with an enable.

always @ (D or Enable) begin
if (Enable) begin
Q<=D;
Qbar <=~D;
end
end

204. Write Verilog code to detect a pattern of 10110 from an
input stream of bits.

Let us assume following states and corresponding meanings:
A: None of the desired pattern is detected yet

B: First bit (1) of the desired pattern is seen

C: First two bits (10) of the desired pattern are seen

D: First three bits (101) of the desired pattern are seen

E: First four bits (1011) of the desired pattern are seen

Based upon the pattern and the states, following will be the state diagram:

1/0

0/0 1/0 | 0/0
' \ 1/0 “w_' 0/0 /’“\ 1/0 1/0 _/")
@ @/ \&) @ s
: 0/1
0/0

module seq_detector (z, x, clock,reset);
output z;
input x , clock ;
input reset; //active high
reg [2 : 0 | state , nextstate;
parameter sO = 3 'b000,s1=3"b001 , s2 = 3 'b010,s3=3"b011 , s4 = 3 'b100;

always @ (posedge clock) begin
if (reset) begin
state <= s0;
nextstate <= s0;
end else begin
state <= nextstate;
end
end

always @ (x or state)

case (state)
sO : if (x) nextstate = s1 ; else nextstate = s0;
sl1: if (x) nextstate = sl ; else nextstate = s2;
s2 : if (x) nextstate = s3 ; else nextstate = s0;
s3 : if (x) nextstate = s4 ; else nextstate = s2 ;
s4 : if (x) nextstate = s1 ; else nextstate = s2 ;

endcase

always @ (x or state)
case (state)
s4:if (x)z=1"Db0; else z=1'bl;
sO,sl,s2,s3:z=1"DO0;
endcase
endmodule

205. Write Verilog code to print nth Fibonacci number where
user provides a value for n. Assume n>2.

The Fibonacci sequence is a series of numbers where a number is found by
adding-up the two numbers before it. Starting with 0 and 1, the sequence
goes 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, and so forth. Written as a rule, the
expressionisx , =x , +X .
Assuming a max value of n=256, following code will generate the nth
fibonacci number. The value of “n” is passed as an input to the module

(nth_number)

module fibonacci (input clock , reset , input [7 : O | nth_number , output [
19 : 0] fibonacci_number);

reg [19 : 0 | previous_value , current_value;

reg [7 : 0] internal_counter;

reg number_ready;

always @(posedge reset)

begin
previous_value <= 'd0; //1st Fibonacci Number
current_value <= 'd1; //2nd Fibonacci Number
internal_counter <= 'd1;

end

always @(posedge clock)

begin
internal_counter <= internal_counter + 1;
current_value <= current_value + previous_value;

previous_value <= current_value;
if (internal_counter == (nth_number - 2))
number_ready <= 1;
else
number_ready <= 0;
end

assign fibonacci_number = current_value;
always @(number_ready)
if (number_ready)
$display ("N =%d, Nth Fibonacci Number = %d" , nth_number ,
fibonacci_number);

endmodule

206. Write a Verilog code for Full adder using Half Adder
modules.

A full added can be implemented using two instances of half adder modules
as shown below:

module half_adder (input_O, input_1 , sum, carry);
input input_0, input_1;
output sum , carry;
assign sum = (input_0)A(input_1);
assign carry = (input_0)&(input_1);
endmodule

module full_adder (input_O, input_1 , input_2 , sum, carry);
input input_0 , input_1 , input_2;
output sum , carry;
reg sum_intermediate , carry_intermediate_0 , carry_intermediate_1;
half_adder hal (input0O, inputl , sum_intermediate , carry_intermediate_0
);

half_adder ha2 (sum_intermediate , input2 , sum, carry_intermediate_1);

assign carry = (carry_intermediate_0)|(carry_intermediate_1);
endmodule

207. What is the difference between a task and a function in
verilog?

1) A function is a subroutine that has to execute without consuming
any time or delay while a task is a subroutine that can execute with
delays.

2) Functions hence can call other functions but not tasks inside.
Tasks can call other tasks as well as functions.

3) Functions could be synthesized while tasks cannot be.

4) Functions normally have a return argument as output but can also
have multiple input and reference arguments. Tasks do not return any
value but can have multiple input and reference arguments.

4.2 SystemVerilog

208. What is the difference between a reg, wire and logic in
SystemVerilog?

reg and wire are two data types that existed from Verilog, while logic is a
new data type that was introduced in SystemVerilog.
1) A wire is a data type that can model physical wires to connect
two elements. Wires can only be driven by continuous assignment
statement and cannot hold onto value if not driven. Wires can hence
only be used to model combinational logic.
2) A reg is a data type that can model a storage element or a state.
They need to be driven by an always block and cannot be driven by
continuous assignment statement. A reg can be used to model both
sequential and combinational logic
3) Alegic is a new data type in SystemVerilog that can be used to
model both wires and state information (reg). It also is a 4 state

variable and hence can hold 0, 1, x and z values. If a wire is declared

as a logic (wire logic), then it can be used to model multiple drivers
and the last assignment will take the value.

bit is a 2-state data type that can take only values 0 and 1, while logic is a 4-
state data type which can take values 0, 1, x, and z.
2-state variables will help in a small simulation speed up but should not be

used if it is used to drive or sample signals from RTL design in which
uninitialized and unknown values will be missed.

210. What is the difference between logic[7:0] and byte variable
in SystemVerilog?

byte is a signed variable which means it can only be used to count values till

127. A logic[7:0] variable can be used for an unsigned 8 bit variable that can
count up to 255.

211. Which of the array types: dynamic array or associative

array, are good to model really large arrays, say: a huge
memory array of 32KB?

phssociayepmAysERebenes o model large arrays as '

only when an entry is written into the array. on the other
hand initi i

For example: If you want a memory array of 32KB to be modelled using
dynamic array, you would first need to allocate 32K entries and use the array
for read/write. Associative arrays doesn’t need allocation and initialization
of memory upfront and can be allocated and initialized just when an entry of
the 32K array needs to be referenced..

However, associative arrays are also slowest as they internally implement
search for elements in the array using a hash.

212, Suppose a dynamic array of integers (myvalue s) is
initialized to values as shown below. Write a code to find all
 elements greater than 3 in the array using array locator
“method find ”?

int myvalues[]='{9,1,8,3,2,4,6},

int match_q [$;
match_q = myvalues . find with (item > 3);

213. What is the difference between a struct and union in
SystemVerilog?

A structure represents a collection of data types that can be referenced as a
whole, or the individual data types that make up the structure can be
referenced by name. For example: in the example below, we have a struct
defined calle d instruction_ s that groups a 24 bit address field and an 8 bit
opcode field.
typedef struct {
bit[7 : 0] opcode ;
bit [23 : 0 | addr;
} instruction_s;
instruction_s current_instruction ;
current_instruction . addr ="' h100;

Th e instruction_ s struct can be referenced together or individual members
can be accessed. The total memory allocated would be the sum of memory
needed for all the data types. Hence in above example, th e
currect_instructio n struct would take a total memory of 32 bits (24 bit
address and 8 bit opcode)

A union is a data type which can be accessed using one and only one of the
named member data type. Unlike struct you cannot access all member data
types together. The memory allocated for the union would be the maximum

of the memory needed for the member data types. Unions are normally
useful if you want to model a hardware resource like register that can store
values of different types. For example: if a register can store an integer and a
real values, you can define a union as follows:
typedef union {
int data;
real f data;
} state_u;
state_u reg_state;
reg_state . f_data = ' hFFFF_FFFF_FFFF_FFFF;
$ display (" int_data =% h ", reg_state . data);

In this example, the union state_u can either hold a 32 bit integer data or it
can hold 64 bit real data. Hence, the memory allocated for the union
reg_state will be 64 bits (bigger of the two data types). Since, there is shared
memory for all member data types, in above example, if we assign a 64 bit
value to reg_state.f_data, we will be also able to reference the 32 bit of same
using the other data type.

214. What is the concept of a “ref” and “const ref” argument in
SystemVerilog function or task?

A ref keyword is used to pass arguments by reference to a function instead
of a value. The subroutine/function shares the reference handle with the
caller to access values. This is an efficient way of passing arguments like
class objects or arrays of objects where otherwise creating a copy would
consume more memory on the stack. Also, since the caller and the
function/task shares same reference, any change done inside the function
using the reference would also be visible to the caller.
For Example: Here is an example of a CRC function which needs a big
packet as argument to compute CRC. By passing as reference, each call to
CRC function doesn’t need to create a copy of the packet on stack memory.
function automatic int crc (ref byte packet [1000 : 1 |);
for (intj=1;j<=1000;j++) begin
crc A= packet [j [;

end
endfunction

A cons t keyword is used if user wants to make sure that the ref argument
is not modified by the function. For example: in the same CRC function, the
argument can be declared as a “ const re f “ argument as shown below to
make sure that the original packet contents are not modified accidentally by
the CRC function.
function automatic int crc (const ref byte packet [1000 : 1 |);
for (intj=1;j<=1000;j++) begin
crc A= packet [j [;
end
endfunction

215. 'What would be the direction of arguments a and b in
following?
task sticky (ref int array [50], inta, b);

Each argument of a task or function can have a direction which can be one of
input, output, inout or ref. If no direction is specified, the default value of
input is selected. If one of the arguments specifies a direction, then all
following arguments hold on to same direction unless explicitly changed.

So in above example, the first argument has a direction defined as “ref”
which means it is an argument passed by reference. Since the following
arguments “a” and “b” have no explicit directions defined, these also get the
same direction. Hence, “a” and “b” also become pass by reference

arguments.

216. What is the difference between a packed array and an
unpacked array?

A packed array represents a contiguous set of bits while an unpacked array
need not be represented as a contiguous set of bits. In terms of difference in
declarations, following is how a packed and unpacked array is declared

bit [7 : 0] data ; / packed array of scalar bit types
real latency [7 : O |; // unpacked array of real types

Packed arrays can be made of only thlSinglebitaatatypes (bit, logic, reg),

or enumerated types. Example : logic [31 : 0 | addr ; //packed array of logic
type

Unpacked arrays can be made of any data type. Example:
class record_c;
record_c table[7:0 |; //unpacked array of record objects

217. What is the difference between a packed and unpacked
struct?

A packed structure is a way in which a packed bit vector can be accessed as
struct members. Or in other words, if all the members of a struct consist of
only bit fields and can be packed in memory without any gaps, it can be a
packed structure. For example: in the structure definition below, all the
members can be represented as bit vectors (int is equivalent to 32 bits, short
int to 16 bits, byte to 8 bits) and a struct can be packed into a single
contiguous memory of 56 bits.
struct packed {
1 nt a;
short int b;
byte c;
} packl_s;

An unpacked struct need not be packed into contiguous set of bits and hence
different members could be placed in memory with gaps. Following is an
example with a structure having different data types that cannot be packed in
memory.
struct record {

string name;

int age;

string parent;

} record_s

218. Which of the following statement is true?
1) Functions should execute in Zero Simulation Time.
2) Tasks should execute in Zero Simulation Time.

1) True

2) False
Functions always need to be executed in zero simulation time and cannot
contain any construct that can induce a time delay (Example: waiting for
clock edge or # delays etc.). Tasks can have constructs causing timing delays
and hence, need not complete execution in zero time.

219. Given a dynamic array of size 100, how can the array be re-
sized to hold 200 elements while the lower 100 elements are
preserved as original?

A dynamic array needs memory allocation using new[] to hold elements.
Here is an example with an integer array that grows from an initial size of
100 elements to 200 elements.

integer addr []; // Declare the dynamic array.

addr = new [100 |; // Create a 100-element array.

// Double the array size, preserving previous values.
addr = new [200 |(addr);

220. What is the difference between “forever” and “for” in
SystemVerilog ?

The “ forever” loop repeatedly executes a statement without any limit. The
only way execution can stop is by using a break statement. A forever loop if

used without any timing controls (like clock or time delay) can result in a
zero-delay infinite loop and cause hang in simulation.

The “for” loop is used for executing a statement for a defined number of
times based on conditions that are defined.

221. What is the difference between “case”, “casex” and “casez”
in SystemVerilog?

The case statement is a multiway decision statement that tests whether an
expression matches one of a number of possible values and branches
accordingly. Following is a simple example to implement a 3:1 MUX using
a case statement
case (select[1:0])
2'b00 : out_sig = in0;
2'b01: out_sig = inl;
2'b10: out_sig = in2;
default : out_sig = 'x
endcase

In the above example of using a “case” statement, the expression match
happens exactly with what is specified. For example, in above case
statement, if at least one of the select lines is X or Z, then it will not match
any conditions and will execute the default statement.
“ case z ” is a special version of case expression which/@leWsdoH T Earesin
comparison of the expressions. These are typically useful in decoder logic
which only treats fewer bits. Here is an example where a 3 bit interrupt
request queue (irq) bus is decoded into 3 separate interrupt pins based on
which bit in the bus is high, while other bits are don't care.
casez (irq)
3'b1 7?7 :int2 =1"'bl;
3'b?17?:intl =1"'bl;
3'b??1:int0=1"bl;
endcase

“casex” is another special version where in addition to don't cares, it also
ignores X and Z values in comparison.

222. Which of the logical equality operators “==" or “===" are
used in case expression conditions for case, casex, and casez?

All of the 3 case statements use “===" logical equality comparison to
evaluate condition matches.

223. What is the difference between $display, $write, $monitor
and $strobe in SystemVerilog?

1) $display : Print the values immediately when executed.

2) $strob e : Print the values at the end of the current timestep.

3) $monitor : Print the values at the end of the current timestep if
any values change. If $monitor is called more than once, the last call

will override previous one.
4) Swrit e : This is same as $display but doesn't terminate with a

newline (\n).

224. What is wrong with following SystemVerilog code?
task wait_packet;
Packet packet;
event packet_received;
@packet_received;
packet = new ();
endtask
function void do_print ();
wait_packet ();
$display (" packet received ")
endfunction

A function cannot have any construct that consumes time. In above example,
the functio n do_print() is calling a task which consumes time. Hence, this
is illegal.

A proper fix is to have the functio n do_print() be called inside the task to
print packet after it is received.

225. What is the difference betwee n new() and new][] in
SystemVerilog?

The functio n new() is the class constructor function in SystemVerilog. It is
defined in a class to initialize data members of the class.

Th e new[] operator is used to allocate memory for a dynamic array. The
size of the dynamic array that needs to be created is passed as an argument
tothe new|[] .

226. What is the concept of forward declaration of a class in
SystemVerilog?

Sometimes a class might reference another class which is not fully defined in
the compile order. This can cause a compile error. For Example: If two
classe s Statistics an d Packe t are defined in following order, then while
compiling Statistics class, the definition of packet is not yet seen and
compiler will fail.

class Statistics;

Packet p1;
endclass

class Packet;
//full definition here
endclass

To avoid this problem, th e Packe t Class can be forward declared before
the full definition. This concept is called forward declaration.
typedef Packet ; //forward declaration

class Statistics;
Packet p1;
endclass

class Packet;
//full definition here
endclass

227. Analyze following code and explain if there are any issues
with code?
task gen_packet (Packet pkt);

pkt = new ();

pkt . dest = OxABCD;
endtask
Packet pkt;

initial begin
gen_packet (pkt);
$display (pkt . dest);
end

The code will result in a runtime null pointer error.

The tas k gen_packet() has an argument which is pass by value. It creates
an object and uses the handle of the argument.

In the initial block, once the gen_packet() task is called and once th e
pkt.des t field is modified it is still local to the task and trying to display the
value outside the task causes a null pointer error.

228. What is the difference between private, public and protected
data members of a SystemVerilog class?

1) Private data members of a class can only be accessed from within
the class. These data members will not be visible in derived classes.

2) Public members can be accessed from within the class as well as
outside the class also. These are also visible in derived classes.

3) Protected data members are similar to private members in the
sense that they are only accessible within the class. However, unlike
private members, these are also visible in derived classes.

229. Are SystemVerilog class members public or private by
default ?

System Verilog class members are public by-default, unlike other languages
like C++/Java which have default data members as private.

230. What is a nested class and when would you use a nested
class?

When the definition of a class contains another class definition, then that
class is called a nested class. For example: In the code below, the StringList
class definition contains definition for another class Node.
class StringList;
class Node ; // Nested class for a node in a linked list.
string name;
Node link;
endclass
endclass
Nesting allows hiding of local names and local allocation of resources. This
is useful when a new type is needed as part of the implementation of a class.

231. What are interfaces in SystemVerilog?
The interface construct in SystemVerilog is a named bundle of nets of

variables which helps in encapsulating communication between multiple
design blocks. An interface can be instantiated in a design and can be

connected using a single name instead of having all the port names and
connections.
In addition to connectivity, functionality can also be abstracted in an
interface as it supports defining functions that can be called by instantiating
design for communication. Interfaces also support procedural (always/initia
1 blocks) and continuous assignments which are useful for verification in
terms of adding protocol checks and assertions.
Following is a simple example on how an interface can be defined.
interface simple_bus ; // Define the interface
logic req , gnt;
logic [7 : 0 | addr , data;
logic [1: 0 | mode;
logic start , rdy;
endinterface : simple_bus

232. What is a modport construct in an interface?

modport (short form for module port) is a construct in an interface that let
you groupssignalsiandispeeifypdirections: Following is an example of how an
interface can be further grouped using modports for connecting to different
components.

interface arb_if (input bit clk);
logic [1:0 | grant, request;
logic reset;
modport TEST (output request , reset, input grant , clk);
modport DUT (input request , reset , clk, output grant);
modport MONITOR (input request , grant , reset , clk);
endinterface

In this example, you can see that the same signals are given different
directions in different modports. A monitor component needs all signals as
input and hence the modport MONITOR of interface can be used to connect
to monitor. A test or a driver will need to drive some signals and sample
other signals and above example shows a modport TEST that can be used

233. Are interfaces synthesizable?
Yes, interfaces are synthesizable.
234. Whatis a clocking block and what are the benefits of using
clocking blocks inside an interface?
A clocking bloc k is a construct that assembles all the signals that are
sampled or synchronized by a common clock and define their timing

behaviors with respect to the clock. Following example illustrates a simple
clocking block.

In above example, we have defined a clocking block with nam e sample_c
b and the clock associated with this clocking block is clk. T h e default
keyword defines the default skew for inputs (2 ns) and output (3 ns). The
input skew defines how many time units before the clock event the signal is
sampled. The output skew defines how many time units after the clock event
the signal will be driven.

signal 53I"I"I[J-|Ed here 5ignal driven here
A A

clock

o
™
input skew 4/ S output skew

A clocking block can be declared only inside a module or an interface.

235. What is the difference between following two ways of
specifying skews in a clocking block?
1) input #1 step reql;
2) input #lns reql;

The clocking skew determines how many time units away from the clock
event a signal is to be sampled (input skew) or driven (output skew). A skew
can be specified in two forms - either explicitly in terms of time as in case 2)
above, where the signal is sampled 1ns before the clock, OR in terms of
time step as in case 1) above, where th e [Si@preorrespondstoglobaltime
PIEEISioN (defined usin g “timescal e directive)

236. What are the main regions inside a SystemVerilog simulation
time step?

A SystemVerilog simulator is an event driven simulator and as the simulator
advances in time, it needs to have a well-defined manner in which all events
are scheduled and executed. In any event simulation, all the scheduled
events at a specific time defines a time slot. A time slot is divided into a set
of ordered regions to provide predictable interactions between the design and
testbench code.

A timeslot can be broadly divided into 5 major regions as shown below and
each of the regions can be further subdivided into sub-regions.

From previous
time slot
= Preponed
-
|
Active
v
Observed
Continue until all
= values stabilize
¥
Reactive
; -
FPostponed
" .. To next time slot

1) Prepone : The preponed region is executed only once and is the
first phase of current time slot after advancing the simulation time.
Sampling of signals from design for testbench input happens in this
region.

2) Active : The active region set consists of following sub regions -
Active, Inactive and the NBA (Nonblocking assignment) regions. RTL
code and behavioral code is scheduled in Active region. All blocking
assignments are executed in Active region. For nonblocking
assignments, evaluation of RHS happens in Active region, while
assignment happens in the NBA region. If there are any assignments
with #0 delays, those happen in the Inactive region.

-
|

L

Active
i
Y

Inactive

i

From Reactive regions

3) Observed: The Observed region is for evaluation of property
expressions (used in concurrent assertions) when they are triggered.
During property evaluation, pass/fail code is scheduled for later in the
Reactive region of the current time slot

4) Reactive : The reactive region set (Re-active, Re-Inactive and Re-
NBA) is used to schedule blocking assignments, #0 blocking
assignments and nonblocking assignments included in SystemVerilog
“program” blocks. This separate Reactive region ensures that all the
design code evaluation (in Active region set) stabilizes before the
testbench code in the program blocks is evaluated. With OVM/UVM
methodologies, there is no need of program blocks (with standard
phasing of testbench code) and hence Reactive region may not be used
much.

5) Postponed : There is also a postponed region which is the last
phase of current time slot. $monitor, $strobe and other similar events
are scheduled for execution in this region. $display events are
scheduled for execution in Active and Reactive regions (if called in
program blocks).

237. Given following constraints, which of the following options
are wrong?
rand logic[15:0]a, b, c;
constraint c_abc {
a<c;

b==a;
c < 30;
b > 25;
}
1) b can be any value between 26 and 29
2) c can be any value between 0 and 29
3) c can be any value between 26 and 29

SystemVerilog constraints are bidirectional. In above example, since a <c
and c < 30, a has to be less than 30. However, since b also has to be equal to
a and > 25, it means a, b, and c can only take values from 26 to 29 only.

Hence, only option 2) is wrong.

238. Will there be any difference in the values generated in
following constraints?
1)
class ABSolveBefore;
rand bit A ;
rand bit[1:0 | B;
constraint c_ab {
(A==0)->B==0;
solve A before B;
}
endclass
2)
class ABSolveBefore;
rand bit A ;
rand bit[1:0 | B;

constraint c_ab {
?f (A::0)—>B::0;_bh%

SO fore A;

}
(TXSO 'W/e‘ndclass 0156 ﬁ

In both the cases, by default, A can have a value of 0 or 1, while B can have
a value of 0,1,2,3. However, since there is a constraint that if A==0 ->
B==0, this restricts value of B to be zero if A is zero.
1) If we solve A first, then A=0 or 1 is picked with ¥ probability
each. If A is picked 0, B will be always zero. If A is picked one, then
B has equal probability of taking 3 values (1,2,3).
2) If we solve B first, then B = 0,1,2,3 has equal probability of 4. If
B is picked 0, then A will be zero. If B is non-zero, then A will be
always 1.
So, in both cases, the values generated for A and B will be same, but
probability of generation of values will differ based on which is solved first.

239. What is a unique constraint in SystemVerilog?

A unique constraint is used to randomize a group of variables such that no
two members of the group have the same value. Following shows an
example: Here a class has a random array of bytes (a) and one another byte
(b). The unique constraint in this example shows how unique values can be
generated for all of these.

class Test;
rand bytea [5 |;
rand byte b;
constraint ab_cons { unique { b, a[0: 5]}; }
endclass

240. How can we disable or enable constraints selectively in a
class?

<object>.constraint_mode(0) :: To disable all constraints
<object>.<constraint>.constraint_mode(0) :: To selectively disable specific

constraints

class ABC;

rand int length;
rand byte SA;
constraint c_length { length inside [1 : 64];}
constraint c_sa { SA inside [1: 16 |;}
endclass
ABC abc = new ();
abc. constraint_mode (0); // will turn off all constraints
abc . c_length . constraint_mode (0); // will turn off only length
constraint

241. Given a Packet class with following constraints, how can we
generate a packet object with address value greater than
200?
class Packet;
rand bit [31 : 0 | addr;
constraint c_addr { addr inside [0 : 100 |;}
endclass

Since default constraint restricts address to be less than 100, we will need to
use inline constraints and turn off default constraint as below:

Packet p = new ();

p.c_addr.constraint_mode(0);

. randomize () with { addr > 200 ;};

242. What ar e pre_randomize() an d post_randomize()
functions?

These are built-in callback functions supported in SystemVerilog language to
perform an action immediately either before every randomize call or
immediately after randomize call. A pre_randomize() is useful for setting
or overriding any constraints while a post_randomize() is useful to
override results of a randomization.

243. Write constraints to generate elements of a dynamic array
(abc as shown in code below) such that each element of the
array is less than 10 and the array size is less than 10.
class dynamic_array;
rand unsigned int abc [];
endclass

For dynamic arrays, we can use a foreach constraint to constraint the value
of each of the element of the array as shown below:
constraint c_abc_len {
abc.size() < 10;
foreach (abc [i])
abc[i] <10;
}

244. Write constraints to create a random array of integers such
that array size is between 10 and 16 and the values of array
are in descending order?

class array_abc;
rand unsigned int myarray |[];
endclass

constraint c_abc_val {
myarray . size inside { [10 : 16] };
foreach (myarray [i])
if (i>0)myarray [i] <myarray [i-1];
}

245. How can we use constraints to generate a dynamic array
with random but unique values ? Refer the code below:
class TestClass;
rand bit [3 : 0] my_array []; /dynamic array of bit[3:0]
endclass

There are two ways in which this can be done - one using the SV unique
constraint and one without using it as shown in 2) below.

1) Add a unique constraint to the class as below
constraint c_rand_array_uniq {

my_array . size == 6 ; //or any size constraint
unique { my_array }; //unique array values
}

2) Without using unique constraint, you can still generate
incremental values and then do an arra y shuffle() in
post_randomize() ;
constraint c_rand_array_inc {
my_array . size == 6 ; // or any size constraint
foreach (my_array [i])
if(i>0) my_array[i]>my_array[i-1 ;
}
function post_randomize ();
my_array . shuffle ();
endfunction

246. Given a 32 bit address field as a class member, write a
constraint to generate a random value such that it always has
10 bits as 1 and no two bits next to each other should be 1

class packet;

rand bit [31 : 0 | addr;

constraint c_addr {

$countones (addr) == 10;

foreach (addr [i])

if(addr[i]| &&i>0)
addr[i]!=addr[i-1];
}

endclass

247. What is the difference between “fork - join”, “fork -
join_any” and “fork - join_none”?

System Verilog supports three types of dynamic processes that can be created
at run-time and executed as independent threads from the processes that
spawned them.

1) fork.. join: Processes that are created using “fork .. join” run as
separate threads but the parent process that spawned them stall until a
point where all threads join back together. If we look at the example
below: there are three processes - task1, task2 and task3, that will run
in-parallel and only after all three of these complete, the $display()
after the join statement will execute.
initial begin
fork
taskl ; // Process 1
task? ; // Process 2
task3; // Process 3
join
$display (“All tasks finished”);
end

2) fork.. join_any: Processes that are created using “fork ...
join_any” run as separate threads but the parent process that spawned
those stalls only until any one of the threads complete. Further, the
remaining threads and the parent process can run parallely. If we look
at the example below: there are three processes - task1, task2 and task3
that will run parallely. When one of task1/task2/task3 completes, the
join_any will complete and cause the $display() to execute while other
tasks might still be running.
initial begin
fork
task1 ; // Process 1
task?2; // Process 2

task3; // Process 3
join_any
$display (“Any one of task1/2/3 finished”);
end

3) fork .. join_none: Processes that are created using “fork ...
join_none” run as separate threads but the parent process that spawned
them doesn’t stall and also proceed parallely. Refer to the following
example and there are three processes - task1, task2 and task3 that will
run parallely with the parent process. .
initial begin
fork
task1 ; // Process 1
task?2; // Process 2
task3; // Process 3
join_none
$display (“All tasks launched and running”);
end

248. What is the use of “ wait fork ” and “ disable fork ”
constructs?

When using a “ fork..join_none ” or a “ fork..join_any”, sometimes we will
want to synchronize the parent process with the dynamic threads running
parallely and this can be done usin g wait fork construct as follows:
initial begin
fork
task1 ; // Process 1
task?2; // Process 2
join_none
$display(“All tasks launched and running”);
wait fork;
$display(“All sub-tasks finished now”);
end

Similarly, a disable for k can be used to prematurely stop the child forked
dynamic processes as shown below:
initial begin
fork
task1 ; // Process 1
task?2; // Process 2
join_any
$display (“One of task1/2 completed ”);
disable fork;
$display (“All other tasks disable now”);
end

249. What is the difference between hard and soft constraints?

The normal constraints that are written in SystemVerilog classes are known
as hard constraints , and the constraint solver need to always solve them or
result in a failure if it cannot be solved.

On the other hand, if a constraint is defined as soft, then the solver will try to
satisfy it unless contradicted by another hard constraint or another soft
constraint with a higher priority.

Soft constraints are generally used to specify default values and distributions
for random variables and can be overridden by specialized constraints.

class Packet; ’T[N;g :g CDﬁQ*X/

rand int length;

constraint length_default_c { soft length inside { 32, 1024 }; }
endclass

Packet p = new ();
p . randomize () with { length == 1512 ; }

In the above example, if the default constraint was not defined as soft, then
the call to randomize would have failed.

250. What will be the value of result printed from each of the
threads in below code?
initial begin
for (intj=0;j<3;j++)begin
fork
automati\inf result;
begin
result = j
$displa
end
join_none
wait fork;
end
end

read =% 0d result =% 0d ", j , result);

Since “j” is not an automatic variable per thread, it keeps incrementing after
each thread is spawned, and when all threads start executing each of them
will see a value of 3. Hence, each thread will print out 9 as a result. If each
thread is intended to use different values, we should copy the value of “j*

j“to
an automatic variable as below:
automatic int k = j;
begin
result = k * k;
end

251. How many parallel processes does this code generate?
fork
for (inti=0;i<10;i++) begin
ABC ();
end
join

Since the “for” loop is inside the fork join, it executes as a single thread.

252. What is wrong with following SystemVerilog constraint?
class packet;
rand bit[15:0]a, b, c;
constraint pkt. c{ 0 <a<b<c; }
endclass

There can be a maximum of only one relational operator (<, <=, ==, >=, or
>) in an expression. If multiple variables need to be in some order, we will
need to write multiple expressions as below.

constraint pkt. c{0<a; a<b; b<c;}

253. Which keyword in SystemVerilog is used to define Abstract
classes?

Sometimes a class is defined with an intention to be only a base class from
which other classes can be derived. Methods may also be defined as virtual
in an abstract class without any definition. Such a base class with no
intention to create an object is defined as an abstract class and is identified
using the virtual keyword as prefix in the class definition.
For Example:

virtual class A,

virtual function process ();
endclass : A

254. What is the difference between a virtual function and a pure
virtual function in SystemVerilog?

A function in a class is defined as virtual to allow overriding the
implementation of the function in a derived class. The base class may or may
not have an implementation of the function that is virtual and may or may
not be overridden in the derived class.

A pure virtual function is a kind of virtual function which will have only
declaration without any implementation. Any class that derives from a base
class having “ pure virtual ” functions need to implement the function. Pure
virtual functions are normally used in abstract class definitions. See the
following example of usage of same.

virtual class BasePacket;

// No implementation

pure virtual function integer send (bit [31 : O | data);
endclass

class EtherPacket extends BasePacket;
virtual function integer send (bit [31 : 0] data);
// body of the function
// that implements the send
endfunction
endclass

255. What does keyword “extends” represent in SystemVerilog?

The “extends” keyword is used in class definition to specify the class from
which the class is derived. For Example : class A extends B ; means class A
is derived from class B.

256. What are Semaphores? When are they used?

Semaphore is a mechanism used to control access to shared resources. It can
be considered like a bucket with a number of keys created when the
semaphore is created. Multiple processes that use a semaphore to access a
shared resource should first procure a key from the bucket before they can
continue to execute. This guarantees that processes which do not get a key
will wait until the ones that procured keys releases them back. Semaphores

are typically used for mutual exclusion, access control to shared resources,
and basic synchronization. Following is how a semaphore can be created.
semaphore smTx; token b
smTx = new (1); //create the semaphore with 1 keys.
The method s get() (blocking call) and try_get() (nonblocking call) are
used to get keys from semaphore whil e put() method is used to release
keys back.

257. What are Mailboxes? What are the uses of a Mailbox?

A mailbox is a communication mechanism that allows messages to be
exchanged between processes. Data can be sent to a mailbox by one process
and retrieved by another. Following is an example of declaring and creating
a mailbox:

mailbox mbxRcv;

mbxRcv = new ();
To place a message in a mailbox, two methods are supporte d put()
(blocking) an d try_put() (nonblocking). To retrieve a message from
mailbox, two methods are supported get() (blocking) and try_get()
(nonblocking). To retrieve the number of messages in the mailbox, we can us
e num().

258. What is difference between bounded and unbounded
mailboxes? How can we create unbounded mailboxes?

A mailbox is called bounded if the size of mailbox is limited when created.
mailbox mbxRcv;
mbxRcv = new (10); //size bounded to 10

A mailbox is unbounded if the size is not limited when created.
mailbox mbxRcv;
mbxRcv = new (); //size is unbounded or infinite

A bounded mailbox becomes full when it contains the bounded number of
messages and any further attempt to place a message will cause the process
to be suspended while unbounded mailboxes never suspend a thread in a
send operation.

259. What is an “event” in SystemVerilog? How do we trigger an
“event” in SystemVerilog?

An identifier declared as an event data type is called a named event. Named
event is a data type which has no storage. A named event can be triggered
explicitly using "->" operator. A process can use the event control “@”
operator to block execution until the event is triggered. Events and event
control gives a powerful and efficient means of synchronization between two
or more concurrently running process.

Following example pseudo code shows how two processes can synchronize
execution using an event. Th e send_req() task emits an event once a
request is send while th e receive_response() event waits until req_sen d
event is seen

module test;
event req_send;

initial begin
fork
send_req ();
receive_response);
join
end

task send_req ();
//create and send a req
->req_send ; //trigger event
endtask

task receive_response ();
@req_send ; //wait until a send event is triggered
//collect response
endtask
endmodule

260. How can we merge two events in SystemVerilog?

An event variable can be assigned to another event variable. When an event
variable is assigned to other, both the events point to same synchronization
object and are said to be merged.

261. What is std::randomize() method in SystemVerilog and
where is it useful?

Th e std::randomize() is a scope randomize function that enables users to
randomize data in the current scope without the need to define a class or
instantiate a class object. This is useful if some variables required to be
randomized are not part of a class. Refer following example of a function
inside a module. There are few variables inside a module that can be
randomized using std::randomize().
thie a module , not a cloess)
module stim; Lo \
bit [15: 0 | addr; . C}%C}Q{W\
bit [31 : 0 | data; ()\1\ v
function bit gen_stim ();
bit success , rd_wr;
success = std:: randomize (addr , data , rd_wr);
return rd_wr ;
endfunction

endmodule

) with |

Y

std::randomize() behaves similar t o randomize() function of classes and
can take all kinds of constraints supported in a class. For example if we want
to add a constraint, it can be added using the wit h construct as follows:

success = std::randomize (addr, data , rd_wr) with { rd_wr -> addr >
hFFO0O0 ;};

262. Is it possible to override a constraint defined in the base class
in a derived class and if so how?

Yes, a constraint defined in the base class can be overridden in a derived
class by changing the definition using the same constraint name. For
Example: Refer the constraint c_a_b_cons t in following code. In the base

class, it is defined to always have a value o f a <b , but in a derived class, it
has been overridden to have always a>b .

class Base;
rand int a ;
rand int b;
constraint c_a_b_const {
a<b;
}

endclass

class Derived extends Base;
constraint c_a_b_const {
a > b;
}

endclass

263. Identify what could be wrong if following function is called
in SystemVerilog constraint as below?
f unction int count_ones (ref bit[9: 0 | vec);

for (count_ones = 0 ; vec != 0 ; vec = vec >> 1) begin

count_ones +=vec & 1 'b1;
end
endfunction
constraint C1 { length == count_ones (vec) ; }

You cannot have functions with arguments as reference in constraints. “const
ref” is fine which will not allow the values to be changed inside function

264. Is there any difference between following two derived class
codes?

virtual class Base;
virtual function printA ();
endfunction

endclass

1)
class Derived extends Base;
function printA ();

//new print implementation
endfunction
endclass
2)
class Derived extends Base;
virtual function printA ();
//new print implementation
endfunction
endclass

There will be no difference. Using virtual keyword to override a default
function is not necessary in derived class, but neither there is an error.

265. Find issues (if any) in following code?
class Packet;

bit [31 : 0 | addr;
bit err = 0;

endclass

class ErrPacket extends Packet ;
bit err = 1;

endclass

module Test;
initial begin
Packet p;

ErrPacket ep; 0 (XW .su)
bos vt el

ep = new ();
LA t)
- ep, ‘&U/A \3 (
$dlsp1ay (" packet addr =% herr=%b ", p.. addr, p . err);
end ~
endmodule

No issues. A base class handle can be used to reference a derived class
object, while the other way (derived class handle referencing base class
object will not work)

266. Given following definitions of two classes - Packet and Bad
Packet, find the correct sequence of which of th e
compute_crc() functions gets called in example code?

class Packet ; //Base Class

rand bit [31 : 0 | src, dst, data [8 |; / Variables
bit[31:0] crc;
virtual function void compute_crc ;

crc = src A dst A data . xor;
endfunction
endclass : Packet

class BadPacket extends Packet ; //Derived class
rand bit bad_crc ;
virtual function void compute_crc_crc ; //overriding
definition
super . compute_crc (); // Compute good CRC
if (bad_crc) crc = ~ crc ; // Corrupt the CRC bits
endfunction
endclass : BadPacket

Example Code (Usage): Answers 1), 2), and 3) are mentioned in
comments

Packet pkt ;
BadPacket badPkt;
initial begin

pkt = new;

pkt . compute_crc ; // 1) Which of compute_crc() gets called?
badPkt = new;

badPkt . compute_crc ; // 2) Which of compute_crc() gets

called ?
pkt = badPkt ; // Base handle points to ext obj
pkt . compute_crc ; // 3) Which of compute_crc() gets called

end

1) Calls base clas s Packet::compute_crc()
2) Calls derived clas s BadPacket::compute_crc()

3) Calls derived clas s BadPacket::compute_crc(), as the base class
pointer still references a derived class object.
This is because when virtual methods are used, SystemVerilog uses the type
of the object and not the handle to decide which routine to call.

267. Which of following constraint coding (giving same results) is
better in terms of performance and why?

1)
constraint align_addr_c {
addr % 4 == 0;
}
2)
constraint align_addr_c {
addr[1:0]==0;
}

Arithmetic operations are more costly. Hence, 2) gives better performance

268. Analyze following pseudo code and comment on any
inefficiency? If so, how can we change the code to make it
more efficient

class Packet;
rand byte [] data;

rand bit valid;
endclass
Packet lots_of_pkts[$]; //array of packets
size = lots_of_pkts . size ();
for (i=0;1i<size;i++) begin
lots_of_pkts [i |. randomize ();
valid = lots_of_pkts [i].valid
if (valid == TRUE) begin

inject (lots_of_pkts[i]. data);
end
end

Every time the packet class is randomized, the member valid can be either
Oor 1. Callin g randomize() and then selectively deciding to use the results
is not an efficient way as randomize is compute heavy. To improve, we shoul
d randomize() using an inline constraint to have bit “valid” to be always
true as below

size = lots_of_pkts . size ();
for (i=0;i<size;i++) begin
data = lots_of_pkts [i]. randomize () with { valid ==1 };
valid = lots_of_pkts [i].valid;
if (valid == TRUE) begin
inject (data);
end
end

269. Which of following coding styles are better and why?

1
)for (i=0;i<length * count ;i ++) begin
alil=blil;
end
2)

1_end = length * count;

for(i=0;i<l_end;i++) begin
ali]=bl[i]

end

2) is better because in 1), there is a multiplication operation to done in each
iteration to check for the loop limits while in 2) the multiplication is done

only once and stored in a variable.

270. What is wrong in this code?
class ABC;
local int var ;
endclass
class DEF extends ABC ;
function new ();
var = 10 ;
endfunction
endclass

var is local to class ABC and is not available in derived class. So it cannot be
used in the derived class.

271. What is a virtual interface and where is it used?

A virtual interface is a variable that points to an actual interface . It is used
in classes to provide a connection point to access the signals in an interface
through the virtual interface pointer. The following example shows an actual
interfac e bus_i f that groups a set of bus signals. A BusTransactor class
then defines a virtual interface of this type that is used to access all signals
from this bus_i f for driving a request or waiting for a grant signal. The top
level test module which instantiates the physical interface will pass the
handle of same to the BusTransactor class through constructor which gets
assigned to the virtual interface pointer.
interface bus_if ; / A bus interface
logic req , grant;
logic [7 : 0] addr , data;
endinterface

class BusTransactor ; // Bus transactor class
virtual bus_if bus ; // virtual interface of type bus_if

function new (virtual bus_if b_if);
bus = b_if ; // initialize the virtual interface
endfunction

task request (); // request the bus
bus . req <=1 'b1;
endtask

task wait_for_bus (); // wait for the bus to be granted
@(posedge bus . grant);
endtask
endclass

module top;
bus_if bif (); / instantiate interfaces, connect signals etc
initial begin
BusTransactor xactor ;
xactor = new (bif) ; //pass interface to constructor
end
endmodule

272. What is the concept of factory and factory pattern?

In object oriented programming, a factory is a method or a function that is
used to create different objects of a prototype or a class. The different classes
are registered with the factory and the factory method can create objects of
any of the registered class types by calling the corresponding constructor.
This method of creating objects through factory instead of calling the
constructor method directly is called factory pattern.

Using factory based object creation instead of calling constructors directly
allows one to use polymorphism for object creation. This concept is
implemented in UVM (Universal Verification Methodology) base class

library and is used for creating and overriding base class objects with
derived class objects.

273. What is the concept of callback?

A "callback" is any function that is called by another function which takes
the first function as an argument. Most of the times, a callback function is
called when some “event” happens.

In a Verification testbench, this feature is useful for several applications:
1) Calling back a function to inject error on transactions sent from a
driver
2) When a simulation phase is ready to end, calling a function to
drain all pending transactions in all sequence/driver.

3) Calling a coverage sample function on a specific event.

Most of the times, callback functions are implemented by registering them

with a component/object that calls back on some defined conditions.

An example call back function in UVM is phase_ready_to_end() which is
implemented in the base class and is registered with the UVM_component
class. The function gets called when the current simulation phase is ready to
end always. Hence, a user can implement any functionality that needs to be
executed at end of a simulation phase by overriding this function definition

274. What is a DPI call?

DPI stands for Direct Programming Interface and it is an interface between
SystemVerilog and a foreign programming language like C/C++. DPI allows
direct inter-language function calls between the languages on either side of
the interface. Functions implemented in C language can be called in
SystemVerilog (imported) and functions implemented in SystemVerilog can
be called in C language (exported) using the DPI layer. DPI supports both
functions (executing in zero time) and tasks (execution consuming time)
across the language boundary. SystemVerilog data types are the only data

types that can cross the boundary between SystemVerilog and a foreign
language in either direction.

275. What is the difference between “DPI import” and “DPI
export”? <

':):/ T W“/\V\R‘) S g\/

A DPIlimported(function is a function that is implemented in the C

language and called in the SystemVerilog code.

A DPI\exported function is a function that is implemented in the

System Veritog-tanguage and exported to C language such that it can be

called from C language.

Both functions and tasks can be either imported or exported.

276. 'What are system tasks and functions? Give some example of
system tasks and functions with their purpose.

SystemVerilog language supports a number of built-in system tasks and
functions for different utilities and are generally called with a “$” prefix to
the task/function name. In addition, language also supports addition of user
defined system tasks and functions.
Following are some examples of system tasks and functions (categorized
based on functionality). For a complete list, one should refer to LRM.

1) Simulation control tasks - $finish, $stop, $exit

2) Conversion functions - $bitstoreal, $itor, $cast

3) Bit vector system functions - $countones, $onehot, $Sisunknown

4) Severity tasks - $error, $fatal, Swarning

5) Sampled value system functions - $rose, $fell, Schanged

6) Assertion control tasks - $asserton, $assertof f

Chapter 5: Fundamentals of Verification

In Digital VLSI Verification Interview, most of the times a candidate is
given a simple digital design and corresponding design specification (Design
Example: a full adder, or a simple ALU, or a simple cache, or a Multi-master
bus, etc.). Candidate is then asked to define a verification strategy and
explain the steps to verify that design. In this way, an interviewer can test a
candidate for his/her general awareness and experience on verification as
well as judge how well a candidate can think, analyze and solve given a
problem statement. Following section contains questions that are designed to
help you crack this segment of an interview. Additionally, this section also
contains some commonly asked questions related to fundamentals of
Verification. A Recent College Graduate may not be asked a lot of questions
from this section, whereas this section may constitute a considerable portion
of interview for a Senior candidate. In an interview, difficulty of this section
varies with the experience of the candidate.

277. What is the difference between directed testing and
constrained random verification? What are the advantages
and disadvantage of both?

Directed testing is an approach where a directed test is written for verifying
each of the features in the design. On the other hand, constrained random
testing is an approach in which a stimulus is generated automatically using
constrained random generators that generates stimulus as per design
specification. Following table provides a comparison in terms of advantages
and disadvantages of both. A recommended approach is to use a mix of both
- constrained random to cover most of verification space and then directed
tests to cover hard to reach corner cases.

\

small project > olirected Wﬂ‘:? \
(wae/ "Iavo‘)wt —> Constrainesl romdem _tm“ﬂ '

Directed Testing Constrained Random Testing

A stimulus generator is implemented that
models constraints on stimulus and design
specification to generate tests
automatically

One or more directed tests are
written to verify each feature of the
design.

Provides good visibility and ; "
; Fid . . : Since tests are generated automatically,
predictability to Verification progress :
: need extra effort to develop functional
as each test correlates to a design

Fismdttrn an i besme xon L g Coverage monitors t:nd collect coverage to
by res are verified

Developing constrained random verification
Directed tests are easier to develop | testbenches is more complex and needs

once the design features are more experience. It can also take more
understood time for development of verification
environments.
For complex designs, writing and The constrained random generator is
maintaining large directed test suites relatively easier to maintain once

is very painful and time consuming | developed compared to large test suites.

Constrained random generator can cover

Directed test writing is imited to more scenarios and features in
scenarios that are identified by combination along with random
understanding the design configuration to stress design better and
specification. cover some scenarios that might be missed

by manual identification.

278. Explain what are self-checking tests?

A self-checking test is one that can check the result of the test by some
means at the end of test. The results can be predicted in the test either by

computing results of some memory operation or by gathering results from
the DUT, like status registers or any other information.

279. What is Coverage driven verification?

In Coverage driven Verification methodology , a verification plan is
implemented by mapping each of the feature or scenario into a coverage
monitor that can be used to collect coverage information during simulation.
1) The coverage monitor can be a combination of sample based
covergroups and property based coverage.
2) In coverage based verification, tests are normally generated using
a constrained random stimulus generator, test correctness is ensured by
functional checkers, and coverage is collected for all the coverage
monitors implemented.
3) Usually multiple tests or multiple seeds of the random generator
are regressed on the design and the individual coverage collected from
each of the test is merged to get a cumulative coverage. Sometimes, a
corner case in the design may not be covered easily using constrained
random stimulus and might be better done using a directed test.
4) Coverage information also provides a feedback to the quality of
tests and constraints in the generator and helps in fine tuning
constraints for efficient random stimulus generation.
5) Since, in this approach the coverage definition is the key step on
which the verification execution is tracked for progress and
completion, it is important to make sure that the coverage definition
and implementation is reviewed for completeness and correctness
against verification plan and design specification.

280. What is the concept of test grading in functional
verification?

Functional verification for a design is done in terms of creating directed tests
as well as constrained random stimulus generator with different controls on
stimulus. Through a design verification project, a set of tests gets developed
and this test suite is used for verifying design correctness, finding bugs in
design and for collecting coverage etc.

Test grading is a process in which individual tests are graded for quality in
terms of different criteria like functional coverage hit, bugs found,
simulation run time, ease of maintenance, etc.

This process helps in identifying efficient tests out of a test suite and thus
developing the most efficient test suite for design verification.

281. What is Assertion based Verification (ABV) methodology?

Assertion-based verification (ABV) is a methodology in which assertions
are used to capture specific design intent. These assertions are then used in
simulation, formal verification, and/or emulation to verify if the design
implementation is correct. ABV methodology can supplement other
functional verification methodologies for efficient verification by making
use of the benefits of assertions. Some of the benefits of assertions are
following:

1) Assertions detect design errors at their source and thus help in

increasing observability and decreasing debug time.

2) Same assertions can be used in both simulation and formal

analysis and even in emulation.

3) A lot of assertions for general designs are available in assertion

libraries and can be easily ported to any verification environment.

4) SystemVerilog Assertions written as properties can also be used

for coverage (using cover properties), and hence help in coverage

based verification methodology.

282. A 2x2 port packet switch has following specifications:

Port A Port A

-
)

Specification: There are two input and output ports A and B as shown
above. Each port can receive packets of variable size between 64 and 1518
bytes. Each packet will have a 4 Byte Source Address and 4 Byte
destination address along with data and a 4 Byte CRC computed across
packet as shown below. The packet will be switched to one of the output port
based on Destination Address.

How will you verify the design? How will you generate stimulus and
checkers? What will be some of your corner cases for verification?

Answer :
For these kinds of questions where a design specification is given, first step
is to understand the design specification and clarify any questions with the
interviewer. The next step is to identify the scenarios to be verified and come
up with a verification plan and strategy document. This should list down the
features/scenarios to be verified, what methodologies can be used to verify
(directed/constrained random, coverage, assertion, etc.), how to check for
correctness etc. Further, details should be provided on how the stimulus can
be generated and how checking can be done. Another aspect is to think
through all design features and identify corner cases that need to be verified.
Now, let’s try to list down how this simple router design can be verified
1) Following are some of the scenarios that need to be verified:

a) Test for proper switching of packets from Port A to both

output ports based on destination address.

b) Test for different packet sizes - minimum size, maximum

size and random sizes in between will be good.

c¢) Test for all possible values of Source and Destination

Address.

d) Test for different data patterns.

e) Test for streaming packets (back to back with no delay, few

cycles delay and large cycles delay), same size packets streamed

or different size packets streamed.

f) Test for correct CRC functionality by expecting the correct

CRC.

g) Tests where some bits of SA/DA or data or even the CRC

are corrupted.

h) What more can you think of?
2) Now, in order to verify above scenarios, we need to design a
constrained random packet generator and we also need a
scoreboard/checker that checks for packet correctness and correct
switching behavior. If the tests are random, we will also need to write
some coverage monitors that make sure all the important scenarios as
mentioned above are getting covered.
3) If an interviewer wants to test you more, then he can also continue
with questions asking you to actually write a SystemVerilog packet
generator code or a checker or driver etc.

283. Given a RAM with a single port for read and write - what all
conditions need to be verified?

A single port RAM has only a single port for read and write. So, it can only
do a read or a write at any given point of time. Other design specifications
that need to be considered for verification are the RAM size, and width of
address and data bus.
Based on this, following are some of the scenarios that should to be verified:
1) Single Read and Write behaves correctly,
2) Back to Back reads or writes to same address and different
addresses,
3) Writes followed by reads to same address back to back,
4) Reads followed by writes to same address back to back,
5) Verifying the boundary of RAM sizes - reads and writes,
6) Verifying the different patterns of writing into memory location
like writing all zeros, all ones, alternating zero/one, walking one/zero
patterns.
If you are further requested to define a verification environment, you can
consider scenarios like above and define whether a directed or constrained

random environment will work better and how the stimulus generator and
checkers can be designed.

284. What is the difference between a single port RAM and dual
port RAM?

A single port RAM has only a single port for read and write. So it can only
do a read or a write at any given point of time. A dual port RAM has 2 ports
for read/write and hence does allow read or write simultaneously.

285. A simple ALU with a block diagram as shown below
supports two 4-bit operands, a 4-bit result bus, and carry
overflow. The ALU supports up to 8 instructions using a 3-
bit opcode or select lines (S2, S1, S0) with a decoding as
below. Explain all the scenarios that needs to be verified to
make sure the ALU works as per the specification table

below:
A
P ALU —— carry
Z I overf low
PI.._ —
A, —— L &
B L :2
B, ————— 1
4 Sp— Rg
B,

8,8p

| $2,51,50 Description
. 0 Add A, B (A+B)
1 Sub A B (A-B)
10 Increment A (A=A+1)
11 Increment B (B=B+1)
100 A AND B (logical AND)
101 A OR B (logical OR)
110-111 Undefined and No operation

Answer :

Following are the scenarios that need to be verified for this given ALU

design:
1) Verify that all individual operations work (Add, Sub, Increment,
AND, and OR) by driving the two operands A and B, and driving the
select lines for each of the operation.
2) Verify that if select lines are between 110-111, then no operation
happens.
3) For each of above instructions, select minimum and maximum
values of A and B and combinations. Given that A and B are 4 bit,
maximum value possible is 4’b1111
4) Verify the overflow and underflow cases for ADD and SUB cases.
If both A and B are 4’b1111, overflow happens for ADD, while if
value of B is greater than A, underflow happens for SUB.
5) Verify wrap around cases for increment instructions. If
A=4’b1111, increment should cause a value of 0.
6) Once individual scenarios are verified, create random sequence of
opcodes to verify that effect of one operation does not affect the
following ones. Check for sequences where same opcodes repeat more
than once or different opcodes repeat in different patterns.
7) To create stimulus, you can design a random opcode and operand
generator and a simple driver. To check for results, a simple model or
ALU can be written and the results can be compared against same.

286. What is the difference between an event driven and a cycle
based simulator?

Event Driven Simulators evaluate a design on every event, by taking each
event and propagating the changes through design until a steady state
condition is reached. An event is defined as a change in any of the input
stimuli for a design element. A design element may be evaluated several
times in a single cycle because of different arrival times of the inputs and the
feedback of signals from downstream design elements.

For example: Consider a case of a logic path between two flip-flops
operating on a clock. The combinational logic path can have several gates
and feedback path. On a clock change, when the output of first flip-flop
changes, it is applied on the input of the logic path and further any change at
the input of the different stages in combinational logic, will trigger that
specific design to be evaluated. This might take several evaluations before
the value stabilizes and no longer change in that clock cycle. Most of the
industry wide used simulators are event driven like: Questa from Mentor,
VCS from Synopsys or Incisive Simulator from Cadence. This is because
event driven simulators provides accurate simulation environment.
Cycle-Based Simulators have no notion of time within a clock cycle. They
evaluate the logic between state elements and/or ports in a single shot. This
helps in significant increase in simulation speeds as each logic element is
evaluated only once per cycle. The disadvantage is that it cannot really
detect any glitches in signals, and it works really well only on logic designs
that are fully synchronous. Since timing of design is not taken into account
during simulation, separate effort needs to be done on timing verification
using any of the static timing analysis tools. Cycle based simulators are not
very popular for general designs but are custom made and used at some of
the companies that develops large designs like microprocessors.

287. What is a transaction? What are the benefits of Transaction
based verification?

A transaction is a higher level abstraction of a group of low level
information, like a group of signals. While designs operate at signal level

information, testbenches need to have drivers and monitors interfacing at
signal level with the design, while all other aspects of testbenches can be
abstracted to be at a transaction level. Transaction based Verification is an
approach in which a testbench is architected in a layered fashion where only
lower layered components operate at signal level and all other components
operate and communicate based on transactions as shown below.

scoreboard

slave

-

-~
-
-
-
-"'
-
pr— -

1) The main advantage of transaction based verification is in terms
of re-using components developed with transactional interface in
different verification environments within a project or across different
projects. For example: with reference to above diagram, only the
driver, monitor and responder needs to have a signal level interface.
Once these components group signal level information to a transaction,
other components like stimulus generators, slave models and
scoreboards can all operate on transactions.

2) Since transactional components need to be evaluated by a
simulator on a transactional boundary and not on every signal changes,
simulations can be little faster.

3) If a design changes in terms of interface timing, then only the
driver and monitor component need a change while other components
will be unaffected.

288. What all simulation/debug tools have you worked on or are
you familiar with?

This is a general question to test your awareness on different tools. Based
upon your answer and experience with different tools, you could also be
asked about your views in terms of easiness/limitations that you might have
come across while using these tools. There is no fixed answer to this, but
commonly used simulators are Questa from Mentor Graphics, VCS from
Synopsys, and Incisive simulator from Cadence. Verdi from Synopsys is also
a commonly used tool for debugging along-with DVE. Formal tools include
Jasper from Cadence, and QuestaFormal from Mentor graphics.

289. When do we need reference model for verifying RTL

designs? What are the advantages of using reference-models
?

A reference model is usually a non-synthesizable model of the design
specification that is usually written in a high level programming language
like C/SystemVerilog. The reference model is sometimes implemented either
to match design specification at a cycle level accuracy, or at a higher level
boundary. For Example: a reference model of a CPU/microprocessor should
be accurately modelling the state at an instruction boundary, while a
reference model for an AMBA bus protocol should be cycle accurate as per
the protocol.

Reference models are normally used in checkers/scoreboards to generate an
expected response for a given stimulus pattern so that it can be compared
against actual result or the output obtained from the design.

290. What is a Bus Functional Model?

Traditionally, Bus Functional Model (BFM) is a non-synthesizable model
written in a high level programming language like C/SystemVerilog that
models the functionality of a bus interface and can be connected to a Design

interface for simulating the design. On one side of BFM, will be an interface
that implements the bus protocol at signal level, and the other side will have
an interface to support sending or receiving transactions.

Overtime this definition has evolved and in methodologies like UVM, there
is no real component like a BFM, but the functionality is implemented by a
collection of components like a driver, a monitor and a receiver.

291. How would you track the progress of the verification
project? What metrics would you use?

A number of metrics are used to track the progress of verification against a
plan. A verification plan captures the scenarios/features to be verified in
terms of directed tests or in terms of functional coverage monitor for detailed
scenarios and corner cases. The plan also captures details on verification
environment development which includes stimulus generation and checking
methodologies.

Progress can be tracked in early stage of project by tracking completeness of
environment development (stimulus generator, checker, monitor etc.), test
development and functional coverage monitor development. Once most of
the tests and a constrained random generator is developed, then tests are
normally run as regressions on a farm of servers, and then progress is
monitored in terms of regression pass rates, bug rate and the functional
coverage numbers.

292. How do you measure completeness of Verification OR
when/how can you say that verification is complete?

Functional Verification can be called complete when the implemented
behavior of a design matches with the design specification without any
errors. To achieve this, we need to apply stimulus to the design to cover
every possible input scenario and verify that the design meets specification
without any errors. However, with ever increasing complexity of the designs,
it is practically not possible to define all the possible input stimulus

scenarios. In addition, resource and time limitations also make this ideal
definition of completeness impractical.
Hence, in most of the projects, verification completeness is about the
confidence achieved through a set of metrics and processes that minimizes
the risk of having a design defect. Following are some of the metrics and
processes that are followed to achieve high confidence with respect to
verification completeness:
1) Reviewing Verification plan and design specification to make sure
all details are understood and captured.
2) Ensuring proper completeness in terms of environment
development, test development, and functional coverage monitor
development against the reviewed plan.
3) Review of testbench stimulus generator and constraints, checkers,
assertions and coverage monitor implementation.
4) Ensuring all tests are enabled in regression mode with
consistently no failures across weeks, all coverage metrics met and
understood.
5) Ensuring that bug rates and unresolved bugs are zero or well
understood to have no impact on design.
6) Waveform Review of important scenarios.
7) Ensuring formal verification is done (wherever possible).
8) Comparing rate of incoming bugs and bug trend with that of past
successful projects of similar complexity.

293. What is GLS and why is it important?

GLS is an acronym for “Gate Level Simulation”. Gate Level Simulations are
run after RTL code is synthesized into Gate Level Netlist. GLS forms an
important part of Verification lifecycle. It is required in addition to static
verification tools like STA (Static Timing Analysis) and LEC (Logical
Equivalence Checking) as STA and LEC don’t cover/report all issues.
Majorly, GLS is used to:

1. Verify DFT scan chains.

2. Verify critical timing paths in asynchronous designs (this is not done

by STA)

3. Verify Reset and Power Up flows.
4. Analyze X-Sate Optimism in RTL.
5. Collect Switching Activity for Power Estimation.

294. What are Power and Performance Trade-offs?

Power and performance are two important design points for a successful
product. While most designs would ideally like to have highest possible
performance with lowest possible power consumption, it is not practically
possible always.
Dynamic power consumption is directly proportional to CV 2 f, where f is
the frequency, V is voltage, and C is capacitance. Hence, In general:
1) Decreasing Voltage will reduce power consumption but lowers
performance (as delay increases)
2) Reducing Frequency will reduce power consumption but lowers
performance (clock is slower)
Hence, for an optimal performance and power target, design needs to make a
choice of right Voltage and frequency values.

Note : More questions on power and clocking are present in “Power and
Clocking” Section (6.3) in the next chapter (Verification Methodologies).

Chapter 6: Verification Methodologies

It is a known fact that Functional Verification consumes significant amount
of time and effort in an overall product lifecycle. With availability of several
tools and techniques, defining and deciding on verification methodologies
that could enable fast and efficient execution towards a bug free design is
becoming an important step of Verification planning phase. Verification
methodologies include Dynamic Simulation vs Formal Verification,
Assertion based Verification, Coverage methodology, Power Aware
Simulations, Performance Verification and also UVM (Universal
Verification Methodology) for constrained random testbenches.

This section is organized into several subsections (covering each of these

methodologies), and various relevant concepts are explained through
detailed answers for commonly asked Interview questions.

6.1 UVM (Universal Verification Methodology)

UVM is a standard verification methodology which is getting more and
more popularity and wider adoption in verification industry. The
methodology was created by Accellera and is currently in the IEEE working
group 1800.2 for standardization. UVM consists of a defined methodology
in terms of architecting testbenches and test cases and also comes with a
library of classes that helps in building efficient constrained random
testbenches easil y .

This section has questions that test your general understanding of UVM
methodology and details on usage of UVM in building constrained random
testbenches.

295. What are some of the benefits of UVM methodology?

UVM is a standard verification methodology which is getting standardized
as [IEEE1800. 2 standard. UVM consists of a defined methodology in terms
of architecting testbenches and test cases, and also comes with a library of
classes that helps in building efficient constrained random testbenches easily.
Some of the advantages and focus of the methodology include following:
1) Modularity and Reusability - The methodology is designed as
modular components (Driver, Sequencer, Agents, Env, etc.) and this
enables reusing components across unit level to multi-unit or chip
level verification as well as across projects.
2) ' Separating Tests from Testbenches - Tests in terms of
stimulus/sequencers are kept separate from the actual testbench
hierarchy and hence stimulus can be reused across different units or
across projects.
3) Simulator Independent - The base class library and the
methodology is supported by all simulators and hence there is no
dependence on any specific simulator.
4) Sequence methodology gives good control on stimulus
generation. There are several ways in which sequences can be
developed: randomization, layered sequences, virtual sequences, etc.
This provides a good control and rich stimulus generation capability.
5) Config mechanisms simplify configuration of objects with deep
hierarchy. The configuration mechanism helps in easily configuring
different testbench components based upon verification environment
using it, and without worrying about how deep any component is in
the testbench hierarchy.
6) Factory mechanisms simplify modification of components easily.
Creating each components using factory enables them to be overridden
in different tests or environments without changing underlying code
base.

296. What are some of the drawbacks of UVM methodology?

With increasing adoption of UVM methodology in the verification industry,
it should be clear that the advantages of UVM overweight any drawbacks.

1) For anyone new to the methodology, the learning curve to
understand all details and the library is very steep.

2) The methodology is still developing and has a lot of overhead that
can sometimes cause simulation to appear slow or probably can have
some bugs

297. What is the concept of Transaction Level Modelling ?

Transaction level Modelling (TLM) is an approach to model any system or
design at a higher level of abstraction. In TLM, communication between
different modules is modelled using Transactions thus abstracting away all
low level implementation details. This is one of the key concepts used in
verification methodologies to increase productivity in terms of modularity
and reuse. Even though the actual interface to the DUT is represented by
signal-level activity, most of the verification tasks such as generating
stimulus, functional checking, collecting coverage data, etc. are better done
at transaction level by keeping them independent of actual signal level
details. This helps those components to be reused and better maintained
within and across projects.

298. What are TLM ports and exports?

In Transaction Level Modelling , different components or modules
communicate using transaction objects. A TLM port defines a set of methods
(API) used for a particular connection while the actual implementation of
these methods are called TLM exports. A connection between the TLM port
and the export establishes a mechanism of communication between two
components.

producer [} consumer

Here is a simple example of how a producer can communicate to a consumer
using a simple TLM port. The producer can create a transaction and “put” to
the TLM port, while the implementation of “put” method which is also
called TLM export would be in the consumer that reads the transaction
created by producer, thus establishing a channel of communication.

299. What are TLM FIFQOs?

A TLM FIFO is used for Transactional communication if both the producing
component and the consuming component need to operate independently. In
this case (as shown below), the producing component generates transactions
and “puts” into FIFO, while the consuming component gets one transaction
at a time from the FIFO and processes it.

producer [J——>{] tim fifo OD—f] get_consumer

300. What is the difference between a get() and peek() operation
on a TLM fifo?

Th e get() operation will return a transaction (if available) from the TLM
FIFO and also removes the item from the FIFO. If no items are available in
the FIFO, it will block and wait until the FIFO has at least one entry.

Th e peek() operation will return a transaction (if available) from the TLM
FIFO without actually removing the item from the FIFO. It is also a blocking
call which waits if FIFO has no available entry.

301. What is the difference between a get() and try_get()
operation on a TLM fifo?

get() is a blocking call to get a transaction from TLM FIFO. Since it is

blocking, the tas k get() will wait if no items are available in the FIFO

stalling execution. On the other hand, try_get() is a nonblocking call

which will return immediately even if no items are available in the FIFO.

The return value o f try_get() indicates if a valid item is returned or not.

Following are two equivalent implementations usin g get() and try_get()
1) Using the blocking method - get()

class consumer extends uvm_component;
uvm_get_port #(simple_trans) get_port;
task run;
for (inti=0;i<10;i++)begin Q,J\/,‘)GV‘JS.%Q/’C()
t = get (); //blocks until a transaction i
returned
//Do something with it.
end
endtask
endclass

2) Equivalent implementation using nonblocking method - try_get()

class consumer extends uvim_component;
uvm_get_port #(simple_trans) get_port;
task run;
for (inti=0;i<10;i++) begin
//Try get is nonblocking. So keep attempting
//on every cycle until you get something
/Iwhen it returns true
while (! get_port . try_get (t)) begin
wait_cycle (1); //Task that waits one clock cycle
end
//Do something with it
end
endtask
endclass

302. What is the difference between analysis ports and TLM
ports? And what is the difference between analysis FIFOs
and TLM FIFOs? Where are the analysis ports/FIFOs used?

The TLM ports/FIFOs are used for transaction level communicationghetwesn
(B EOMPOnents that have a communication channel established using

put/get methods.

Analysis ports/FIFOs are another transactional communication channel

which are meant for a component to distribute (o Broadeast) transaction to

more than one component.

TLM ports/FIFOs are used for connection between driver and sequencer

while analysis ports/FIFOs are used by monitor to broadcast transactions

which can be received by scoreboard or coverage collecting components.

s a,emae T usetidle 0 SeJtence o
Qﬂ \N%at is the difference be y Q7 ’t%S

en a sequence and sequence
item?

A sequence item is an object that models the information being transmitted
between two components (sometimes it can also be called a transaction). For
Example: consider memory access from a CPU to the main memory where
CPU can do a memory read or a memory write, and each of the transaction
will have some information like the address, data and read/write type.
A sequence can be thought of a defined pattern of sequence items that can be
send to the driver for injecting into the design. The pattern of sequence items
is defined by how the body() method is implemented in sequence. For
Example: Extending above example, we can define a sequence of 10
transactions of reads to incremental memory addresses. In this case, the
body() method will be implemented to generate sequence items 10 times,
and send them to driver while say incrementing or randomizing address
before next item.

304. What is the difference between a uvm_transaction and a
uvim_sequence_item?

Obwy ite, COMpubri C&‘Cfﬁﬁ

uvm_JFERSAEHoN is the base class for modelling any transaction which is
derived fro m uvm_object .

A sequence item is nothing but a transaction that groups some information
together and also adds some other information like:gseguengegigy(id of
sequence which generates this item), and FaRSAEHONIA (the id for this item),
etc. It is recommended to us e uvm_sequence_ite m for implementing
sequence based stimulus.

305. What is the difference between copy(), clone(), and create()
method in a component class?

1) The create() method is used to construct an object.

2) The copy() method is used to copy an object to another object.

3) The clone() method is a one-step command to create and copy an
existing object to a new object handle. It will first create an object by
calling the create() method and then calls the copy() method to copy
existing object to the new handle.

306. Explain the concept of Agent in UVM methodology.

UVM agent is a component that collects together a group of other
uvm_components focused around a specific pin-level interface for a DUT.
Most of the DUTs have multiple logical interfaces and an Agent is used to
group all: AVEHSEqUENCEORIOMaNAIOMeNCOMPONEtSIoperating at that
specific interface. Organizing components using this hierarchy helps in
reusing an “Agent” across different verification environments and projects
that have same interface.

Following diagram shows usually how a group of components are organized
as agent.

A
Analysis
Part
2
Agent configured
as ACTIVE -
Config
Analysis -
Component Monitor *
Fin level
Interface to
Design
Sequencer | » Driver >

307. What all different components can a UVM agent have?

As explained in previous question, an agent is a collection of components
that are grouped based on a logical interface to the DUT. An agent normally
has a driver and a sequencer to drive stimulus to the DUT on the interface on
which it operates. It also has a monitor and an analysis component (like a
scoreboard or a coverage collector) to analyze activity on that interface. In
addition, it can also have a configuration object that configures the agent and
its components.

308. What is the difference betwee n get_name() and
get_full_name() methods in a uvm_object class?

Th e get_name() function returns the name of an object, as provided by the
name argument in the new constructor or set _name () method.

The get_full_name() returns the full liierarehiealfname of an object. For
uvm_components, this is useful when used in print statements as it shows

https://www.vmmcentral.org/uvm_vmm_ik/files3/base/uvm_object-svh.html#uvm_object.new
https://www.vmmcentral.org/uvm_vmm_ik/files3/base/uvm_object-svh.html#uvm_object.set_name

the full hierarchy of a component. For sequence or config objects that don't
have a hierarchy, this prints the same value as a get_name()

309. How is ACTIVE agent different from PASSIVE agent?

An ACTIVE agent is an agent that can generate activity at the pin level
interface on which it operates. This means, the components like driver and
sequencer would be connected and there would be a sequence running on it
to generate activity.

A PASSIVE agent is an agent that doesn’t generate any activity but can only
monitor activity happening on the interface. This means, in a passive agent
the driver and sequencer will not be created.

An Agent is normally configured ACTIVE in a block level verification
environment where stimulus is required to be generated. Same agent can be
configured PASSIVE as we move from block level to chip level verification
environment in which no stimulus generation is needed, but we still can use
same for monitoring activity in terms of debug or coverage.

310. How is an Agent configured as ACTIVE or PASSIVE?

UVM agents have a variable of type UVM_ACTIVE_PASSIVE_e which
defines whether the agent is active (UVM_ACTIVE) with the sequencer and
the driver constructed, or passive (UVM_PASSIVE) with neither the driver
nor the sequencer constructed. This parameter is called active and by default
it is set to UVM_ACTIVE.
This can be changed usin g set_config_int() while the agent is created in
the environment class. The build phase of the agent should then have the
code as below to selectively construct driver and sequencer.
function void build_phase (uvm_phase phase);
if (m_cfg . active == UVM_ACTIVE) begin
//create driver, sequencer
end
endfunction

311. What is a sequencer and a driver, and why are they needed?

A Driver is a component that converts a transaction or sequence item into a
set of pin level toggling based on the signal interface protocol.

A Sequencer is a component that routes sequence items from a sequence to
a driver and routes responses back from driver to sequence. The sequencer
also takes care of arbitration between multiple sequences (if present) trying
to access driver to stimulate the design interface.

These components are needed as in a TLM methodology like UVM,
stimulus generation is abstracted in terms of transactions and the sequencer
and driver are the components that route them and translate them to actual
toggling of pins.

312. What is the difference between a monitor and a scoreboard
in UVM?

A monitor is a component that observes pin level activity and converts its
observations into transactions or sequence_items. It also sends these
transactions to analysis components through an analysis port.

A scoreboard is an analysis component that checks if the DUT is behaving
correctly. UVM scoreboards use analysis transactions from the monitors
implemented inside agents.

313. Which method activates UVM testbench and how is it
called?

Th e run_test() method (a static method) activates the UVM testbench. It
is normally called in an “initial begin ... end” block of a top level test
module, and it takes an argument that defines the test class to be run. It then
triggers construction of test class and th e build_phase() will execute and
further construct Env/Agent/Driver/Sequencer objects in the testbench
hierarchy.

314. What steps are needed to run a sequence?

There are three steps needed to run a sequence as follows:

1) Creating a sequence. A sequence is created using the factory
create method as shown below:

my_sequence_c Seq;

seq —/my_sequence_c ::type_id::create (" my_seq ")
2) Configuring or randomizing a sequence. A sequence might have
several data members that might need configuration or randomization.
Accordingly, either configure values or call

seq. randomize ()
3) Starting a sequence. A sequence is started usin g sequence.start(
) method. The start method takes an argument which is the pointer to
the sequencer on which sequence has to be run. Once the sequence is
started, th e body() method in the sequence gets executed and it
defines how the sequence operates. Th e start() method is blocking
and returns only after the sequence completes execution.

315. [Explain the protocol handshake between a sequencer and
driver?

The UVM sequence-driver API majorly uses blocking methods on sequence
and driver side as explained below for transferring a sequence item from
sequence to driver and collecting response back from driver.

On the sequence side, there are two methods as follows:
1) start_item(<item>) : This requests the sequencer to have access
to the driver for the sequence item and returns when the driver grants
access to the sequencer.
2) finish_item(<item>) : This method results in the driver receiving
the sequence item and is a blocking method which returns only after
driver calls th e item_done() method.

On the driver side,

1) get_next_item(req) : This is a blocking method in driver that
blocks until a sequence item is received on the port connected to
sequencer. This method returns the sequence item which can be
translated to pin level protocol by the driver.

2) item_done(req) : The driver uses this nonblocking call to signal
to the sequencer that it can unblock the sequence s finish_item()
method, either when the driver accepts the sequences request or it has
executed it.

Following diagram illustrates this protocol handshake between sequencer
and driver which is the most commonly used handshake to transfer requests
and responses between sequence and driver.

{ Sequence ‘ [Driver J

start_itemireq)
Sequencer '
arbitration v send item fo driver
finish_itemireq) —_— get_next_ltemireq)
' i Dirive request,
i + collectresponse in req fields
v |
v
Use response It «-— item_done(req)

Maowe to next item

Few other alternatives methods are : get() method in driver which is
equivalent to calling get_next_item() along wit h item_done() .
Sometimes,there would also be need for a separate response port if the
response from driver to sequence contains more information than what could
be encapsulated in the request class. In this case, sequencer will use a
get_response() blocking method that gets unblocked when the driver sends

a separate response on this port using put() method. This is illustrated in
below diagram.

[Sequence] [Driver]

start_itemireq)

Sequencer |
arbitration ¥ send item to driver

finish_item(req) EE—N get (req)

v Drive request,

& j 2 =
get_response(resp) : collectresponse

Send response
Y ondifferet port
Unbiocks get_responsefy put (resp)
Move to next item

316. What ar e pre_body() and post_body() functions in a
sequence? Do they always get called?

pre_body() is a method in a sequence class that gets called before th e
body() method of a sequence is called . post_body() method in sequence
gets called after th e body() method is called.

Th e pre_body() and post_body() methods are not always called. The
uvim_sequence::start() has an optional argument which if set to 0, will result
in these methods not being called. Following are the formal argument of
start() method in a sequence.

virtual task start (
uvm_sequencer_base sequencer , // Pointer to sequencer
uvm_sequence_base parent_sequencer = null , / parent sequencer

integer this_priority = 100, // Priority on the sequencer
bit call_pre_post = 1); // pre_body and post_body called

317. Is the start() method on a sequence blocking or nonblocking
?

Th e start() method is a blocking call. It blocks execution until th e body/(
) method of the sequence completes execution.

318. What are the different arbitration mechanisms available for
a sequencer?

Multiple sequences can interact concurrently with a driver connected to a
single interface. The sequencer supports an arbitration mechanism to ensure
that at any point of time only one sequence has access to the driver. The
choice of which sequence can send a sequence_item is dependent on a user
selectable sequencer arbitration algorithm. There are five built-in sequencer
arbitration mechanisms that are implemented in UVM. There is also an
additional hook to implement a user defined algorithm.

The sequencer has a method calle d set_arbitration() that can be called to
select which algorithm the sequencer should use for arbitration. The six
algorithms that can be selected are following:

1) SEQ_ARB FIFO (Default if none specified). If this @Fbitfation
mode is specified, then the sequencer picks sequence items in a FIFO
order from all sequences running on the sequencer. For Example: if
seql, seg2 and seq3 are running on a sequencetr, it will Pick an item
from seql first, followed by seq2, and then seq3 if available, and
continue.

2) SEQ_ARB WEIGHTED: If this arbitration mode is selected,
sequence items from the highest priority sequence are always picked
first until none available, then the sequence items from next priority
sequence, and so on. If two sequences have equal priority, then the
items from them are picked in a random order.

3) SEQ_ARB RANDOM : If this arbitration mode is selected,
sequence items from different sequences are picked in a random order
by ignoring all priorities.

4) SEQ_ARB STRICT FIFO: This is similar to
SEQ_ARB_WEIGHTED except that if two sequences have same
priority, then the items from those sequences are picked in a FIFO
order rather than in a random order.

5) SEQ_ARB STRICT RANDOM : This is similar to
SEQ_ARB_RANDOM except that the priorities are NOT ignored. The
items are picked randomly from sequences with highest priority first
followed by next and in that order.

6) SEQ_ARB USER: This algorithm allows a user to define a
custom algorithm for arbitration between sequences. This is done by
extending the uvm_sequencer class and overriding the
user_priority_arbitration() method.

319. How do we specify the priority of a sequence when it is
started on a sequencer?

The priority is specified by passing an argument to th e start() method of
the sequence. The priority is decided based on relative values specified for
difference sequences. For Example: If two sequences are started as follows,
the third argument specifies the priority of the sequence.

seq_1 . start (m_sequencer , this, 500); /Highest priority

seq_2 . start (m_sequencer , this , 300); /Next Highest priority

seq_3 . start (m_sequencer , this, 100); //Lowest priority among three
sequences

320. How can a sequence get exclusive access to a sequencer?
When multiple sequences are run on a sequencer, the sequencer arbitrates

and grants access to each sequence on a sequence item boundary. Sometimes
a sequence might want exclusive access to sequencer until all the sequence

items part of it are driven to driver (for example: if you want to stimulate a
deterministic pattern without any interruption). There are two mechanisms
that allow a sequence to get exclusive access to sequencer.

1) Using lock() and unlock () : A sequence can call the lock
method of the sequencer on which it runs. The calling sequence will be
granted exclusive access to the driver when it gets the next slot via the
sequencer arbitration mechanism. If there are other sequences marked
as higher priority, this sequence needs to wait until it gets it slot. Once
the lock is granted, no other sequences will be able to access the driver
until the sequence issues an unlock() call on the sequencer which will
then release the lock. The lock method is blocking and does not return
until lock has been granted.

2) Using grab() and ungrab(): The grab method is similar to the
lock method and can be called by the sequence when it needs
exclusive access. The difference between grab and lock is that when
grab() is called, it takes immediate effect and the sequence will grab
the next sequencer arbitration slot, overriding any sequence priorities
in place. The only thing that can stop a sequence from grabbing a
sequencer is an already existing lock() or grab() condition on the
sequencer.

321. What is the difference between a grab() and a lock() on
sequencer?

Both grab() and lock() methods of a sequencer are used by a sequence
running on that sequencer to get exclusive access to the sequencer until the
corresponding unlock() or ungrab() is called. The difference between grab
and lock is that when agrab()lon'sequenceris'called it takesimmediate
effect’and the sequence will grab the next sequencer arbitration slot
overriding any sequence priorities in place. However, a call toflock()
sequencer will need to wait until the calling sequence gets its next available
slot based on priorities and arbitration mechanisms that are set.

In terms of usage, one example usage will be to use a lock to model a
prioritised interrupt and a grab to model a non-maskable interrupt, but there
are several other modelling scenarios where this will be useful as well.

322. What is the difference between a pipelined and a non-
pipelined sequence-driver model?

Based on how a design interface needs to be stimulated, there can be two
modes implemented in an UVM driver class.
1) Non-pipelined model: If the driver models only one active
fransaction at a time, then it is called a non-pipelined model. In this
case, sequence can send one transaction to the driver and driver might
take several cycles (based on the interface protocol) to finish driving
that transaction. Only after that the driver will accept a new transaction
from sequencer
class nonpipe_driver extends uvm_driver #(req_c);
task run_phase (uvm_phase phase);
req_c reg;
forever begin
get_next_item (req); / Item from sequence via sequencer
// drive request to DUT which can take more clocks
/I Sequence is blocked to send new items til then
item_done (); / ** Unblocks finish_item() in sequence
end
endtas k : run_phase
endclass : nonpipe_driver

2) Pipelined model : If the driver models more than one active
transaction at a time, then it is called a pipelined model. In this case
sequence can keep sending new transactions to driver without waiting
for driver to complete a previous transaction. In this case, on every
transaction send from the sequence, driver will fork a separate process
to drive the interface signals based on that transaction, but will not
wait until it is completed before accepting a new transaction. This

modelling is useful if we want to drive back to back requests on an
interface without waiting for responses from design.

class pipeline_driver extends uvm_driver #(req_c);
task run_phase (uvm_phase phase);
req_c reg;
forever begin
get_next_item (req); // Item from sequence via sequencer
fork
begin
//drive request to DUT which can take more clocks
//separate thread that doesn't block sequence
//driver can accept more items without waiting
end
join_none
item_done (); // ** Unblocks finish_item() in sequence
end
endtask : run_phase
endclass : pipeline_driver

323. How do we make sure that if multiple sequences are running
on a sequencer-driver, responses are send back from driver
to the correct sequence?

If responses are returned from the driver for one of several sequences, the
sequence id field in the sequence is used by the sequencer to route the
response back to the right sequence. The response handling code in the
driver should use th e [o() call to ensure that any response items
have the same sequence id as their originating request.

Here is an example code in driver that gets a sequence item and sends a
response back (Note that this is a reference pseudo code for illustration and
some functions are assumed to be coded somewhere else)

class my_driver extends uvim_driver;
//function that gets item from sequence port and

//drives response back
function drive_and_send_response ();
forever begin
seq_item_port . get (req_item);
//function that takes req_item and drives pins
drive_req (req_item);
//create a new response item
rsp_item = new ();
//some function that monitors response signals from dut
rsp_item . data = m_vif . get_data (
//copy id from req back to response
‘rsp.set_id_info(req_item);
//write response on rsp port
rsp_port . write (rsp_item)
end
endfunction
endclass

324. What is m_sequencer handle?

When a sequence is started, it is always associated with a sequencer on
which it is started. The m_sequencer handle contains the reference to the
sequencer on which sequence is running. Using this handle, the sequence
can access any information and other resource handles in the UVM
component hierarchy.

325. What is a p_sequencer handle and how is it different in
m_sequencer?

A UVM sequence is an object with limited life time unlike a sequencer or a
driver or a monitor which are UVM components and are present throughout
simulation time..So if you need to access any members or handles from the

testbench hierarchy (component hierarchy), the sequence would need a
handle to the sequencer on which it is running.

m_sequence r is a handle of typ e uvm_sequencer_bas e which is available
by-default in a uvm_sequence. However, to access the real sequencer on
which sequence is running, we need to typecast th e m_sequence r to the
real sequencers, which is generally calle d p_sequence r (though you could
really use any name and not just p_sequencer).

Here is a simple example where a sequence wants to access a handle to a
clock monitor component which is available as a handle in the sequencer.

class test_sequence_c extends uvim_sequence ;
test_sequencer_c p_sequencer
clock_monitor_c my_clock_monitor;

task pre_body ();
if (! SEaSEEPISEqUENCENMISEGUERGED)) begin
‘uvm_fatal("Sequencer Type Mismatch:", " Wrong Sequencer");
end
my_clock_monitor = p_sequencer . clk_monitor ;
endtask
endclass

class test_Sequencer_c extends uvm_sequencer;
clock_monitor_c clk_monitor;
endclass

326. What is the difference between early randomization and late
randomization while generating a sequence?

In Early randomization , a sequence object is first randomized using
randomize () call and then the sequence call s start_item() to request access
to sequencer, which is a blocking call and can take time based upon how

busy the sequencer is. Following example shows an object (req) randomized
first and then sequence waits for arbitration

task body();
assert (req . randomize ());

start_item (req); //Can consume time based on sequencer
arbitration

finish_item (req);
endtask

In Late randomization, a sequence first call s start_item() , waits until
arbitration is granted from the sequencer, and then just before sending the
transaction to sequencer/driver, randomize is called. This has the advantage
that items are randomized just in time and can use any feedback from design
or other components just before sending an item to driver. Following code
shows late randomization of a request (req)

task body();

start_item (req); //Can consume time based on sequencer
arbitration

assert (req . randomize ());
finish_item (req);
endtask

327. What is a subsequence ?

A subsequence is a sequence that is started from another sequence. From th
e body() of a sequence, i f start() of another sequenc e is called, it is
generally called a subsequence .

328. What is the difference betwee n get_next_item() an d
try_next_item() methods in UVM driver class?

The get next item() is a blocking call (part of the driver-sequencer API)
which blocks until a sequence item is available for driver to process, and
returns a pointer to the sequence item.

The try_next item() is a nonblocking version which returns a null pointer
if no sequence item is available for driver to process.

329. What is the difference betwee n get_next_item() and get(
) methods in UVM driver class?

Th e get next_item() is a blocking call to get the sequence item from the
sequencer FIFO for processing by driver. Once the sequence item is
rocessed by driver, it needs to cal 1 item_done() to complete the
handshake before a new item is requested usin g get_next_item().
The get() is also a blocking call which gets the sequence item from
sequencer FIFO for processing by driver. However, while using get(), there
is no need to explicitly cal | item_done() as the get() method completes the
handshake implicitly.

330. What is the difference between get() and peek() methods of
UVM driver class?

The get() method part of driver class is a blocking call which gets the
sequence item from sequencer FIFO for processing by driver. It unblocks
once an item is available and completes handshake with sequencer.

The peek() method is similar to get() and blocks until a sequence item is
available. However, it will not remove the request from the sequencer FIFO.
So calling peek() multiple times will return same sequencer item in driver.

331. What is the difference in item_done() method of driver-
sequencer API when called with and without arguments?

Th e item_done() method is a nonblocking method in driver class that is
used to complete handshake with the sequencer after a get_next_item() or

try_next_item() is successful.

If there is no need to send a response back , item_done() is called with no
argument which will complete the handshake without placing anything in the
sequencer response FIFO.

If there is a need to send a response back , item_done() is passed with a
pointer to a response sequence_item as an argument. This response pointer
will be placed in the sequencer response FIFO which can be processed by
the sequence as a response to the request it drove.

332. Which of the following driver class methods are blocking
calls and which are nonblocking ?

1) ~+t\

2) get_next_

3) item_done()

4) put()

5) try_next_item()
6) I

get(), get_next_item(), peek() are blocking calls.
try_next_item(), item_done(), and put() are nonblocking calls

333. Which of the following code is wrong inside a UVM driver
class?
1)
function get_drive_req ();
forever begin

req = get ();
req = get ();
end
endfunction

2)
function get_drive_req ();
forever begin

req = get_next_item ();
req = get_next_item ();
item_done ();
end
endfunction

3)
function get_drive_req ();
forever begin

req = peek ();
req = peek ();
item_done ();
req = get ();
end
endfunction

2) is wrong as you cannot call get_next item() twice before calling
item_done() as it will not complete handshake with the sequencer.

334. How can you stop all sequences running on a sequencer?

The sequencer has a metho d stop_sequences() that can be used to stop all
sequences. However, this method does not check if the driver is currently
processing any sequence_items. Because of this, if driver calls an
item_done() or put(), there can be a Fatal Error as the sequence pointer
might not be valid. So a user needs to take care of making sure that once
stop_sequence() is called, the sequencer thread is disabled (if started in a

Which method in the sequence gets called when user calls

sequence.print() method?

) : It is recommended to implement this function which
returns a string representation of the object (values of its data members).

This is useful to get debug information printed to simulator transcript or log
file.

336. Identify any potential issues in following code part of a UVM
sequence

task body();
seq_item_c req;
start_item(req);
#10 ns;
assert(req.randomize());
finish_item(req);
endtask

Adding a delay between start_item and finish_item should be avoided. The
sequence wins arbitration and has access to sequencer/driver once start_item
returns. Any delay from then till finish_item will hold up the
sequencer/driver and will not be available for any other sequence. This will
be more problematic if multiple sequences are run on an interface and more
the delay, more idle on the design interface.

337. What is a virtual sequence and where do we use a virtual
sequence? What are its benefits?

A virtual sequence is a sequence which controls stimulus generation across
multiple sequencers. Since sequences, sequencers and drivers are focused on
single interfaces, almost all testbenches require a virtual sequence to co-
ordinate the stimulus and the interactions across different interfaces. Virtual
sequences are also useful at a Subsystem or System level testbenches to have
unit level sequences exercised in a co-ordinated fashion.

Following diagram shows this conceptually where a Virtual sequence has
handles to three sequencers which connect to drivers for three separate
interface to DUT. The virtual sequence can then generate sub sequences on
each of the interfaces and run them on the corresponding sub-sequencer.

338.

virtual Sequence that runs
sub sequences on different

Sequencers
St Sequencer Sequencer
B C
A
DA Driver B Driver C

' : :

Design Under Test

Given a simple single port RAM as shown below that can
either do a read or a write to an address, write a sequence
and driver following UVM to test for read and write. Assume
that read_enable=1 means read and write_enable=1 means
write. Only one of read or write can happen in a single cycle.

datain[7:0] | dataout{7-0]
— ——

read_enable

write_enable

addr(7:0] Single Ported
— RAM
clock
——

To implement a UVM driver and sequence, we need to first define the
sequence item class and then the sequence and driver class can use this as
the transaction to communicate.

Following is an example code for the sequence item, the sequence and the
driver. Use similar guidelines for approaching any programming code using
UVM.

1) Sequence item is the transaction used for communication between
a sequence and driver. This should abstract all information needed to
be finally driven as signals on DUT.

class rw_txn extends uvm_sequence_item;
rand bit [7 : 0 | addr; //address of transaction
typedef enum { READ , WRITE } kind_e; //read or write type
rand kind_e sram_cmd ;
rand bit [7 : 0 | datain; //data

//Register with factory for dynamic creation

“uvm_object_utils(rw_txn)

//constructor
function new (string name = "rw_txn");

super . new (name);

endfunction

//Print utility
function string convert2string ();

return $psprintf ("sram_cmd=%s addr=%0h datain=%0h , sram_cmd . name (), addr , datain);
endfunction

endclas s

2) A sequence that generates 10 transactions of above type and send
to driver:

class sram_sequence extends uvm_sequence #(rw_txn) ;
//Register with factory

“uvm_object_utils(sram_sequence)

function new (string name = "sram_sequence");
super . new (name);

endfunction

//Main Body method that gets executed once sequence is started

task body ();
r'w_txn rw_trans;

//Create 10 random SRAM read/write transaction and send to driver
repeat (10) begin
rw_trans = rw_txn :: type_id :: create (. name ("rw_trans"),. contxt (get_full_name ()));
start_item (rw_trans); //start arbitration to sequence
assert (rw_trans . randomize ()); //randomize item
finish_item (rw_trans); //send to driver
end

endtask
endclass

3) A driver code that receives above transaction from sequence and
drives it on SRAM protocol.

class sram_driver extends uvm_driver #(rw_txn);

“uvm_component_utils(sram_driver)

virtual sram_if vif; //Interface that groups dut signals

function new (string name , uvm_component parent = null);

super . new (name , parent);
endfunction

//Build Phase
//Get the virtual interface handle from config_db

function void build_phase (uvm_phase phase);
super . build_phase (phase);
if (! uvm_config_db #(virtual sram_if)::get(this, "", "sram_if", vif)) begin
“uvm_fatal("SRAM/DRV", "No virtual interface specified")

end
endfunction

//Run Phase

//Implement the Driver-Sequencer API to get an item

//Based on if it is Read/Write - drive on SRAM interface the corresponding pins
virtual task run_phase (uvm_phase phase);

super . run_phase (phase);

this . vif . read_enable <='0;

this . vif . write_enable <= "0;

forever begin
rw_txn tr;

@ (this . vif . master_cb);

//First get an item from sequencer

seq_item_port . get_next_item (tr);

@ (this . vif . master_cb); //wait for a clock edge

uvm_report_info ("SRAM_DRIVER " , $psprintf ("Got Transaction %s" , tr . convert2string

0));

//Decode the SRAM Command and call either the read/write function
case (tr . sram_cmd)

rw_txn :: READ : drive_read (tr . addr , tr . dataout);

rw_txn :: WRITE : drive_write (tr . addr , tr . datain);

endcase
//Handshake DONE back to sequencer
seq_item_port . item_done ();

end

endtask : run_phase

//Drive the SRAM signals needed for a Read
virtual protected task drive_read (input bit [31 : 0] addr,
output logic [31 : 0 | data);
this . vif . master_cb . addr <= addr;
this . vif . master_cb . write_enable <= '0;
this . vif . master_cb . read_enable <='1;
@ (this . vif . master_cb);
this . vif . master_cb . read_enable <= '0;
data = this . vif . master_cb . dataout;

endtask : drive_read

//Drive the SRAM signals needed for a Write
virtual protected task drive_write (input bit [31 : 0] addr,
input bit [31 : 0] data);
this . vif . master cb . addr <= addr;
this . vif . master_cb . write_enable <='1;

this . vif . master_cb . read_enable <='0;
@ (this.vif.master_cb);

this . vif . master cb . write_enable <= '0;
endtask: drive write
endclass

339. What s a factory?

A “factory” in UVM methodology is a special look up table in which all of
the UVMcomponents and transactions are registered. The recommended
way to create objects of components and transactions in UVM is by using
the factory method calle d create() .

Creating objects using factory also helps in substituting an object of one type
with an object of a derived type without having to change the structure of the

testbench or editing the testbench code.

340. What is the difference between creating an object using
new() and create() methods?

The recommended method in UVM for creatingicomponentsiorntransaction
objects is to use the built-in method ::type_id::create() instead of calling the
constructor new() directly. The create method internally makes a call to the
factory to look up the requested type and then calls the constructo r new()
to actually create an object. This allows type overriding easily as in the test,
you can specify the type of class (base or one or derived) and all the other
testbench components will be able to create object of that class type without
any code change.

A new() constructor will only create an object of a given type and
therefore using a new() will nof @llow Fin time changing of class types.
Hence, using a new() means the testbench code will need to change based on
the different types to be used.

341. How do we register an uvim_component class and
uvm_sequence class with factory?

The uvm_sequence class is registered with the factory usin g
uvm_object_utils() macro and passing the class name as argument. An
Example below:
class test_seq_c extends uvm_sequence;
‘uvm_object_utils(test_seq_c)
The uvm_component class is registered with the factory usin g
uvm_component_utils() macro and passing the class name as argument. An
Example below:
class test_driver_c extends uvm_component;
“uvm_component_utils(test_driver_c)

342. Why should we register a class with factory?

A factory is a special look up table used in UVM for creating objects of
component or transaction types. The benefit of object creation using factory
is that a testbench build process can decide at run-time which type of object
has to be created. Based on this, a class type could be substituted with
another derived class type without any real code change. To ensure this
feature and capability, all classes are recommended to be registered with
factory. If you do not register a class with factory, then you will not be able
to use the factory metho d ::type_id::create() to construct an object.

343. What is meant by factory override?

The UVM factory allows a class to be substituted with another derived class
at the point of construction. This can be useful for changing the behaviour of
a testbench by substituting one class for another without having the need to
edit or re-compile the testbench code.

344. What is the difference between instance override and type
override?

A type override means that every time a component class type is created in
a testbench hierarchy, a substitute type is created in its place. This applies to
all instances of that component type. On the other hand} an instance
override means, overriding only a specific instance of a component class. A
specific instance of a component is referenced by the position of that
component in the UVM component hierarchy. Since only UVM component
classes can have a hierarchy in UVM testbenches, only component classes
can be overridden on an instance granularity while sequences (or UVM
objects) can be only type overridden.

345. Can instance override and type override be used for both
UVM_component class and transaction types ?

No, only UVM_component classes are part of UVM testbench hierarchy and
EbEoVemdde oA Eanulan) The sequence items or

sequences are not a part of UVM testbench hierarchy and hence can only be

overridden using type override which will override all objects of that type.

346. What is the concept of objections and where are they useful?

Th e uvm_objectio n class provides a means forSharifga counterbétween

multiple components and sequences EaEH COMpPONENT/SEqUEncemay Faise
and "drop" objections asynchronously, which increases or decreases the

counter value. When the counter reaches zero (from a non-zero value), an
"all dropped" condition is said to occur.
The objection mechanism is most commonly used in the UV M phasing
(mechanism) to coordinate the end of each run-time phase. User-processes
started in a phase raises an objection first and drops the objection once the
process completes. When all processes in a phase drops the objects, the
phase's objection count goes to zero. This “all dropped” condition indicates
to the phasing mechanism that every participant agrees the phase should be
ended.
Following is an example of how a sequence (my_test_sequenc e) is started
on a sequencer (my_sequence r) and the objection is dropped after
sequence completes execution

task main_phase (uvm_phase phase);

endtask

347. How can we implement a simulation timeout mechanism in
UVM methodology?

A simulation time out mechanism helps to stop the simulation if the test
doesn’t progress because of some bug beyond a maximum time.

In UVM, set_global_timeout(timeout) - is a convenience function that sets
uvim_top.phase_timeout variable with the timeout value. If the run() phase
doesn’t end before this timeout value, then the simulation is stopped and an
error is reported.

This function is called in the top level module which also starts the test as
follows

module test;
initial begin
set_global_timeout (1000ns);
end

initial begin
run_test ();
end
endmodule

348. What is the concept of phasing in UVM methodology?

Unlike a module based testbench (in which all modules exist statically in a
hierarchy), class based testbench need to manage creation of different
objects and execution of various tasks and functions in those objects.
Phasing is an important concept in class based testbenches to have a
consistent testbench execution flow./A'test execution can be conceptually
divided into following tasks - configuration, creation of testbench
components, runtime stimulus, and end of test checks. UVM defines
standard phases for each of these as part of the methodology.

349. What are the different phases of a UVM component? What
are the sub-phases for the UVM run_phase()?

UVM uses standard phases to order the major steps that take place during
simulation. There are three groups of phases, which are executed in the
following order.
1. Build phases - In the build phases; the testbench is configured and
constructed. It has following sub-phases which are all implemented as
virtual methods in uvm_component base class.

1) build_phase()

2) connect_phase()

3) end_of_elaboration()
2. Run time phases - These phases can consume time and this is where most
of the test execution happens.

1) start_of_simulation()

2) run_phase()

The run_phase() is further divided into 12 sub-phases as below:

1) pre_reset

2) reset

i) - post_reset
) pre_configure
5) configure

6) post_configure
7) pre_main

8) main

9) post_main

10) pre_shutdown
11) shutdown

19 S
3. Clean up phase - This phase execute after the test ends and is used to

collect, and report results and statistics from the test. This consists of
following sub phases:
1)
2) check()
3) report()
4) final()

350. Why is build_phase() executed top down in uvin_component
hierarchy?

In UVM, all the testbench components like test, Env, Agent, Driver,
Sequencer are based of uvm_component class and there is always a
hierarchy for the testbench components. The build_phase() method is part of
uvm_component class and is used to construct all the child components from
the parent component. So, to build the testbench hierarchy you always need
to have a parent object first, which can then construct its children, and that
can further construct its children using build_phase. Hence, build_phase() is
always executed top down.

For Example: The top level uvm_test class calls build_phase which should
construct all the uvm_env components part of this test, and the build_phase()
of each uvm_env class should construct all the uvm_agent components that
are part of that uvm_env, and this goes on. For all other phases it really
doesn't matter in which order it is called. The run_phase() for all components
runs in parallel.

351. What is the use of phase_ready_to_end() method in a
uvim_component class?

phase_ready_to_end(uvim_phase phase) is a callback method available in
a component class which gets called Whenrall'6bjections are dropped forthat
corresponding phase and the phase is going to end.

A component class can use this callback method to define any functionality
that it needs to perform when the phase is about to end.

One example is if a component want to delay ending of phase until some
condition even after all objections are dropped, it can be done using this
callback method.

Another example is if an irritator or reactive sequence is running until a
main sequence is complete , phase_ready_to_end() callback method in
main_phase() can be used to stop those irritator sequences.

352. What is uvim_config_db and what is it used for?

The UVM configuration mechanism supports sharing of configurations and
parameters across different testbench’'components! This is enabled using a
configuration database called uvm_config_db . Any testbench component
can populate the configuration database with variables, parameters, object
handles etc. Other testbench components can get access to these variables,
parameters, object handles from the configuration database without really
knowing where it exists in the hierarchy.

For Example, a top level testbench module can store a virtual interface
pointer to th e uvm_config_db . Thenany uvm_driver ora
uvm_monito r components can query th e uvm_config_d b to get handle to
this virtual interface and use it for actually accessing the signals through the
interface.

353. How do we use the get() and set() methods of
uvim_config_db?

The get() and set() are the primary methods used to populate or retrieve
information from the uvm_config_db. Any verification component can use
th e set() method to populate the config_db with some configuration
information and can also control which other components will have visibility
to same information. It could be set to have global visibility or visible only
to one or more specific testbench components. Th e get() function checks
for a shared configuration from the database matching the parameters.

The syntax for the get() and set() methods are as follows:

uvm_config_db# (<type>)::set(uvim_component context, string inst_name,
string field_name,<type> value)

uvm_config_db# (<type>)::get(uvm_component context, string inst_name,
string field_name, ref value)

Th e context specifies the current class or component from which get/set is
called. Th e inst_nam e is the name of the instance of component from
which get/set is called. Th e field_nam e is the name of the object or
parameter or variable which is set/get in config_db. Th e <type > identifies
the type of the configuration information set/get in config_db. For object
handles, this will have the class name while for other variables; it will be the
type of that variable.

354. Is it possible for a component lower in testbench hierarchy to
pass a handle to a component in higher level of hierarchy
using get/set config methods?

This is not a recommended way of passing configuration objects in UVM.
Normally the higher level component sets up configuration data base with
handles and the lower level components dofgerthem using gei/sermethods:

355. What is the recommended way of assigning virtual interfaces
to different components in a UVM verification methodology?

The top level testbench module which instantiates the DUT and interfaces
will set the virtual interface in the uvm_config_db . A test class or any
other component in the UVM component hierarchy can then query the
uvm_config_db using the get() method to get handles to this virtual interface
and use them for accessing signals. Following shows an example of how this
is done. The module test actually instantiates a DUT and physical interface
for an APB bus master. It then sets the virtual interface handle to the
uvm_config_db.

module test;
logic pclk;
logic [31 : 0] paddr;
//Instantiate an APB bus master DUT
apb_master apb_master (. pclk (pclk),*);
//Instantiate a physical interface for APB interface

(EPBRIENEPBNER pclk (pclk), *);
initial begin
//Pass this physical interface to test class top
//which will further pass it down to env->agent->drv/sqr/mon

uvm_config db #(Viftualapbuif):: set (null, "uvm_test_top",
"vif", apb_if);

end
endmodule

Following shows a APB Env class that uses the get() method i n
uvm_config_d b to retrieve the virtual interface that was set in the top level
test module.

class apb_env extends uvm_env;
‘uvm_component_utils (apb_env);
//ENV class will have agent as its sub component
apb_agent agt;
//virtual interface for APB interface

//Build phase - Construct agent and get virtual interface handle
from test and pass it down to agent

function void build_phase (uvm_phase phase);
agt = apb_agent :: type_id :: create("agt" , this);
if (1 : : : o mesen
begin
“uvm_fatal ("config_db_err", "No virtual interface specified for
this env instance")
end

endfunction : build_phase
endclass : apb_env

356. Explain how simulation ends in UVM methodology?

UVM has a phased execution which consists of a set of build phases, run
phases and check phases. Th e run() phase is where the actual test
simulation happens and during this phase every component can raise an
objection in beginning and hold it until it is done with its activity. Once all
components drops the objection, theffif()phase completes and then Eheek()
phase of all components execute and then the test ends.

This is how a normal simulation ends, but there are also controls on
simulation timeouts to terminate th e run() phase if some component hangs
due to a bug in design or testbench. When th e run() phase starts, a parallel
timeout timer is also started. If the timeout timer reaches one of the specified
timeout limits before th e run() phase completes, th e run() phase will
timeout, an error message will be issued and then all phases pos t run() will
get executed and test ends after that.

357. Whatis UVM RAL (UVM Register Abstraction Layer)?

UVM RAL (Register Abstraction Layer) is a feature supported in UVM that
helps in verifying the registers in a design as well as in configuration of
DUT using an abstract register model.

The UVM register model provides a way of tracking the register content of a
DUT and a convenience layer for accessing register and memory locations
within the DUT. The register model abstraction reflects the structure of the
design specification for registers which is a common reference for hardware
and software engineers working on the design.

Some other features of RAL include support for both front door and back
door initialization of registers and built in functional coverage support.

358. What is UVM Call back?

Th e uvm_callbac k class is a base class for implementing callbacks, which
are typically used to modify or augment component behavior without
changing the component class. Typically, the component developer defines
an application-specific callback class that extends from this class and defines
one or more virtual methods, called as callback interface . The methods are
used to implement overriding of the component class behavior.
One common usage can be to inject an error into a generated packet before
the driver sends it to DUT. Following pseudo code shows how this can be
implemented.
1) Define the packet class with an error bit
2) Define the driver class that receives this packet from a sequence
and sends it to DUT
3) Define a driver callback class derived from the bas e
uvm_callbac k class and add a virtual method which can be used to
inject an error or flip a bit in the packet.
4) Register the callback class usin g "uvm_register_cb() macro
5) In the run() method of driver that receives and send the packet to
the DUT, based on a probability knob, execute the callback to cause a
packet corruption

class Packet_c;
byte [4] src_addr, dst_addr;
byte [] data;
byte [4] crc;

endclass

//User defined callback class extended from base class
class PktDriver_Cb extends uvm_callback ;
function new (string name = "PktDriver_Cb");
super . new (hame);
endfunction

virtual task corrupt_packet (Packet_c pkt);
//Implement how to corrupt packet
//example - flip one bit of byte 0 in CRC

pkt.crc[0][0]=~pkt.crc[O][0]
endtask
endclass : PktDriver Cb

//Main Driver Class

class PktDriver extends uvm_component ;
“uvm_component_utils(PktDriver)
//Register callback class with driver
“uvm_register_cb(PktDriver,PktDriver_Cb)

function new (string name , uvm_component parent = null);
super . new (name , parent);
endfunction

virtual task run ();
forever begin
seq_item_port . get_next_item (pkt);
‘uvm_do_callbacks(PktDriver,PktDriver_Cb, corrupt_packet(pkt))
//lother code to derive to DUT etc
end
endtask
endclass

359. What is uvm_root class?
Th e uvim_roo t class serves as the implicit top-level and phase controller
for all UVM components. Users do not directly instantiat e uvm_root .
The UVM automatically creates a single instance of uvm_root that users can
access via the global (uvm_pkg-scope) variable, uvm_to p .

360. What is the parent class for uvm_test?

uvm_test class is the top level class that a user can implement and there is no
explicit parent that is mentioned. However, UVM has a special component

called uvm_top and it is assigned as the parent of test class.

6.2 Formal Verification

While simulation is still the major component of any hardware verification
project lifecycle, importance of Formal Verification is growing, and
overtime it has become a significant part of the overall design process. A
dynamic simulation can only increase the confidence regarding the design
correctness and it can never be 100% complete. However, formal
verification has the ability to comprehensively prove correctness of a design
against a specification. The complexity though is in the size of the design
and hence appropriate areas/features are normally selected for formal
verification .

361. What is Formal Verification?

Formal Verification is a process where we use mathematical modelling to
verify a Design implementation meets a specification. It uses mathematical
reasoning and algorithms to prove that a design meets a specification. In
formal verification, all cases (inputs and state) are covered implicitly by the
tool without the need for developing any stimulus generators or expected
outputs. A formal description of the specification in terms of properties or
higher level model is required by the tool for exhaustively covering all input
combinations to prove or disprove functional correctness. SystemVerilog
properties can be used to formally describe a design specification.

362. Is Formal Verification a Static Verification process or a
Dynamic Verification process?

Formal Verification is a Static Verification process as there are no dynamic
simulation cycles that are run.

363. What are the different methods for performing Formal
Verification?

There are two commonly used formal verification methods:
1) Model Checking
2) Formal Equivalence

364. Describe ModelhChecking

In Model Checking method, @modeltobeverifiediis described as set of
(propertiesithat are derived from the(desigh specification: Here gstatesspage) of

the design is(searched exhaustively to see if all the properties hold under all

the states. It throws an error if a property is violated for any state. The
diagram below describes this:

U " .
G,P Bekgn Properties derived from

Design Specification
. dedicee] |
OPBS 1ﬂh P’P‘O l")er'q?l\e/ Model Checker

Does all the
properties
hold at all

the times?

Pass

|~

hetel ad) o
e | r’&\%f?\

365. Describe RommalBquivalence

Formal Equivalence is used to verify if two models at same or different
abstraction are functionally the same or not. This method doesn’t tell if a
modelis functionally eorrect; but it tells if two models are functionally the
same or not (functionally equivalent). This is most commonly used in
comparing functionality of the RTL design and the synthesized netlist. It
can also be used to check against two RTL models or two Gate level models.
The diagram below represents this:

\\ﬂ /ﬂ: Input
2 N
R M ol

\ Model 1 Model 2

checlt

ZQIM ?
- Equal ?

(Model 1 == Model 2)

366. List down few verification conditions under which you can
use Formal Equivalence.

Formal Equivalence can be used to verify if following models are
equivalent:
1) [RTLE Design & Synthesized Netlist (Gate level model)
2) [REEDesign & [REferenceviodel
3) Two RTL designs
4) Two Gate level models
5) Two reference models

367. What are the advantages of Formal Verification over
Dynamic Verification?

Following are some of the advantages of Formal Verification over Dynamic
simulations:

1) Exhaustive verification is not possible with dynamic simulations
as the input stimulus is implemented using a generator or tests.
However, Formal verification covers exhaustive state space as the
stimulus is generated automatically by the tool to try and
prove/disprove all specifications.

2) There isino need to generate input stimulus, since exhaustive
stimulus is generated automatically by tool. The effort from the user
will be to implement a formal specification using properties.

3) There is no need to generate expected output sequences and the
correctness of design is guaranteed mathematically.

368. What are limitations of Formal Verification?
Following are some of the limitations of Formal Verification:

1) gSealabilityis one of the biggest limitations of Formal Verification.
Formal Verification is limited to smaller designs because even addition
of one flip-flop increases design state space by a factor of 2 (which
means input scenarios are doubled for every flip-flop).

2) It ensures correctness of design with respect to design
specification. It{jd6ESHFHigHaranteelif theIdesisnworkSIproperly (say if
Specification itself is buggy).

3) For model checking, [déSigiiSpecificationneedsitolbertransliated
and coded in terms of properties.

369. If a module in a design is formally verified to be working
properly, do we need coverage data for that module?

No, we don’t need coverage data for a module which is formally verified to
be working properly. This is because formal verification mathematically
guarantees that the design intent would be verified under all possible input
conditions.

6.3 Power and Clocking

Present day low-power ASIC/SoC designs support Power Gating, Dynamic
Voltage Frequency Scaling, Multi-Voltage Domains, and Multi-Power
domains. Hence, Power Aware Verification and clock domain crossing
verification forms an important part of design verification flow. This section
introduces basic concepts related to Power and Clocking that you should be
aware of.

370. What are the main components of the power consumption in
a CMOS circuit?

There are two main components that constitute the power consumed by a
CMOS circuit:
1) Dynamic Power - This is caused by transitions because of
capacitive charging
2) Static Power - This is caused by leakage currents in the absence
of any switching. i.e in idle state.

371. What is Dynamic Power and what all parameters does
Dynamic Power consumption depend upon?

Dynamic Power consumption (P) is the sum of capacitive load power (P

) and transient power consumption (P). Dynamic power

cap Transien t

consumption (P ,) is directly proportional tof@V =

P D P cap +P Transient
P,=A(C,[+C)V ,*f
Where, A = Activity Factor (Fraction of the circuit that is switching)
C = Internal Capacitance
C | = Load Capacitance
V 44 = Supply Voltage
f = Operating Frequency

372. What is Static Power and what all parameters does Static
Power consumption depend upon?

Static Power is the power which is consumed when there is no switching
activity in the circuit. It is the leakage power. For Example: when you turn
on the circuit, battery starts draining because of current flow.

P *V
Where, V ,, is the supply voltage an d 1
through the device.

static = static

is the total current flowing

stati ¢

373. Explain the concept of Multi-Voltage domains and why is it
needed?

Multi-Voltage domain is a Low-Power Design technique where we have
multiple voltage domains in a design. Here, the aim is to optimize power for
a required performance. Higher the voltage, faster can be the circuit (higher
performance), but higher will be the power consumption as well (since
dynamic power is proportional to CV ? f). In some designs, only few
portions of the design may need to operate at higher frequency and other
portions may run at a lower frequency also. In such cases, less voltage is
supplied to those portions of the design that can operate at lower frequency
as well. This results in saving power consumption.

374. What is “Dynamic Voltage Frequency Scaling” (DVFS) and
when is it used?

Dynamic Voltage Frequency Scaling is a Low-Power Design Technique to
dynamically adjust power for a required frequency. In this technique,
operating frequency and/or voltage are modified in a way that minimum
frequency and/or voltage are needed for proper operation of a design. It is
called “Dynamic* as this process happens when the design is operational.
Traditional power saving was run at operating frequency and then power off
when idle for a periodic scheduling. For the same workload if we are trading
performance by running at lower frequency we save much more power. The
frequency we chose based on the performance needs to complete a task. This
saving also due to the voltage is quadratic. This is done during the run time
based on the performance needs for the task optimising the idle to run longer
but at lower voltage. This helps in saving power.

375. Whatis UPF?

UPF stands for Unified Power Format and it is an [EEE 1801 Standard. It is
used for specifying power intent of the design. For instance, it describes:
which power rails should be routed, when different blocks of design are
expected to be powered up/powered down, how voltage levels change as
signals moves from one power domain to another, isolation cells and
corresponding clamp values, memory retention, etc.

376. What is Power Aware Simulation and why is it important?

Power Aware Simulation means modelling Power Down and Power Up
behavior at the RTL and/or GLS level. Power Aware Simulation is important
because:
1) It is necessary to find power related RTL/Spec bugs early in the
design cycle. Critical power related bugs can lead to chip being non-
functional.

2) Power Management is critical and modern day ASIC/SoC designs
have significant logic implemented for Power Management.

377. What is meant by a Power Domain?

A Power Domain is a collection of design elements that share a primary
supply set. These are the portions of the design that are grouped based on
common power strategy like operating voltage, supply nets, power up/down
conditions, etc.

378. What is the need of having level shifters in a design?

Level shifters are required when gmultipleswoltagerdomainsiare present in a
design. When a logic signal moves from one voltage domain to another
voltage domain, level shifter is used to convert that logic signal from one
voltage level to another voltage level so that signal logic value is interpreted
properly in different voltage domains.

379. Define the concept of Isolation with respect to Power
Domains.

Isolation is a technique for controlling behavior of a signal which is driven
into or out of a power domain that is powered down. It comprises of
clamping the signal to a known value i.e. 1, 0, or latching it to a previous
value when the power domain is powered down.

380. What is meant by metastability? When does it happen and
what are its consequences?

Metastability (Metastable state) is a state where a circuit is not able to settle
at a stable “0” or “1” logic level within the time required for proper

operation of the circuit. This usually happens when there are setup and hold
time violations. Following are its consequences:
1) It can lead to unpredictable system behavior.
2) Different fan-out cones can read different values of the signal and
can cause the design to enter an unknown state.
3) If unstable data (“0” or “1”) propagates to different portions in the
design, it can lead to high current and can eventually result in chip
burn-out.

381. How can metastability be avoided?

Metastability can be avoided by using synchronizers in the design.
Synchronizers ensure sufficient time for the unstable oscillations (“0” and
“1”) to settle down such that a stable output is obtained.

382. How does a basic synchronizer circuit look like? Draw a
sample Synchronizer circuit.

Below is an example of a basic synchronizer circuit. It is a two flip-flop
synchronizer. The first flip-flop waits for one clock cycle to allow for any
metastability at the input to settle down/fade away and then second flip-flop
provides a stable signal at the output.

Metastable Input Stable Output
—D Q D Q>

CLK

However, it is still possible for the output of first flip-flop to be unstable at
the time signal is clocked into second stage (and cause stage-2 output signal
to go metastable). In such scenarios, we can use three flip-flop synchronizer

circuit. Having said this, usually two flip-flop synchronizer circuits are
sufficient to remove metastability.

383. What is Clock Gating?

Clock Gating is a power saving technique where supply of clock to
inactivate portions of the design is shut-off. It is a technique that is used to
control power dissipated by the clock network. This helps in[Féducing
dynamic power consumed by the design by avoiding unnecessary switching
activity.

384. What is Power Gating and why is it used?

Power Gating is a power saving technique in which portions of the design
that are not in use are shut-down. Power gating shuts off static leakage when
a logic is not in use, thereby reducing power consumption. Power Gating is a
low-power design technique. Clock gating helps in reducing dynamic power
while power gating helps infféducing static power

385. What kind of issues can be encountered in designs (having
multiple Clock Domains) at Clock Domain Crossings (CDC)?

Following are the most common type of issues that can be encountered at a
Clock Domain Crossing (CDC). A Verification Engineer should be familiar
with these scenarios so as to better verify a design with multiple clock
domains:
1) [Metastability leading to synchronization failure in the design :
Clocks are running at different frequencies in different clock domains
and when a signal generated in one clock domain is sampled very
close to the active edge of clock in second clock domain, output may
go to metastable state leading to synchronization failure in the design.
2) [(Dataineoheréney): Destination clock domain may receive
incoherent data if proper design techniques are not used. For Example:

If multiple signals are being transferred from one clock domain to
another clock domain such that all these signals are changing
simultaneously, and the source and destination active clock edges
arrive close to each other, some of these signals may get captured in
one clock cycle and some in another clock cycle in destination clock
domain, thereby leading to data incoherency. Note : This is just one
example of data-incoherency. There can be many more scenarios
where data-incoherency may happen.

3) PDataless: Data may be lost at the CDC boundary if proper
design techniques are not used. For Example: If a signal is moving
from a faster clock domain to a slower clock domain and the width of
that signal is only equal to one clock period (of faster running clock),
there can be a case where this information is missed if the signal
arrives between the active clock edges of clock in slower clock
domain. Nete : This is just one example of data-loss. There can be
many more scenarios where data-loss may happen.

386. How can you synchronize signal(s) between two clock
domains? Mention few design techniques that can be used.

Design techniques to synchronize signal(s) between two clock domains
would differ depending upon whether we need to pass 1-bit or multiple-bits
between different clock domains. As explained in one previous answer, case
of multiple CDC bits should be handled carefully. Assume a case where
multiple signals (multiple CDC bits) are being transferred from one clock
domain to another clock domain such that all these signals are changing
simultaneously, and the source and destination active clock edges arrive
close to each other. In such a case, some of these signals may get captured in
one clock cycle and some in another clock cycle in destination clock domain
leading to data incoherency.
Following design techniques can be used to synchronize signal(s) between
two clock domains.
For 1-bit crossing clock domain:
1) Use 2 Flip-flop or 3 Flip-flop synchronizer in the
receiver(destination) clock domain. Concept of synchronizer is

discussed in one of the answers above.
2) Use closed Loop synchronizer. In this technique, feedback signal
is sent as an acknowledgement signal from destination clock domain to
source clock domain.

For multiple-bits crossing clock domain:
1) Formation of Multi-Cycle Paths (MCP) for multiple CDC bits. In
this method, unsynchronized signal from source clock domain is sent
to destination clock domain along-with a synchronized control signal.
2) Gray Code encoding for multiple CDC bits. As gray code allows
only 1-bit change, it can tackle metastability issues.
3) [(Using Asynchronous FIFOS (data-in from source clock domain
and data-out from destination clock domain) for multiple CDC bits.
This is one of the safest design techniques as it provides full
synchronization independent of clock frequency.
4) Consolidating multiple CDC bits into 1-bit CDC signals and using
2 Flip-flop synchronizer or closed loop synchronizer techniques with
1-bit CDC signal.

387. Give an example of an issue that can occur while
transferring data from a faster clock domain to a slower
clock domain.

If a signal is moving from a faster clock domain to a slower clock domain
and the width of that signal is only equal to one clock period (of faster
running clock), there can be a case where this information is missed if the
signal arrives between the active clock edges of clock in slower clock
domain.

388. What are the advantages and disadvantages of using an
Asynchronous Reset?

Advantages:
1) Asynchronous resets get highest priority.
2) Data path is guaranteed to be clean.

3) They can occur with or without the presence of a clock signal.
Disadvantages:

1) If Asynchronous reset is de-asserted at (or near) an active edge of

the clock, output of a flip-flop may go into a metastable state.

2) It is sensitive to glitches, and this may lead to spurious resets.

389. What are the advantages and disadvantages of using a
Synchronous Reset?

Advantages:
1) Synchronous resets occur at an active clock edge and hence they

ensure that a circuit is 100% synchronous.

2) They are easier to work with while using cycle based simulators.
3) They usually synthesize into smaller flip-flops thereby helping
save die-area.

Disadvantages:
1) Synchronous resets may need a pulse-stretcher so that it’s wide

enough to be seen at active clock edge.

2) They lead to addition of extra combinational logic.

3) Synchronous resets need presence of clock to cause the resets. If
the circuit has an internal tristate bus, separate asynchronous reset
would be required to prevent bus conflict on internal tristate bus.

390. What is a Reset Recovery Time? Why is it relevant?

Reset Recovery Time is the time between reset de-assertion and the clock
signal going high. If the reset de-assertion happens and within a very small
time window, if the clock signal goes high, it can lead to metastability
conditions. This is because all signals that become active after reset de-
assertion will not meet timing conditions at the next flop input.

391. What is a frequency synthesizer? Give an example of
frequency synthesizer?

Frequency synthesizer is a circuit that can generate a new frequency from a
single stable reference frequency. For Example: For generating a 200MHz
clock signal from a reference 100 MHz clock signal, PLL is commonly used
as a frequency synthesizer.

392. WhatisaPLL?

PLL stands for “Phase Locked Loop”. In simple terms, it is a feedback
electronic circuit (a control system to be precise) that is used to generate an
output signal whose phase is related to the phase of an input signal. It is used
for performing phase/frequency modulation and demodulation, and can also
be used as frequency synthesizer. PLL consists of three functional blocks:

1) Phase Detector

2) A Loop Filter

3) Voltage Controlled Oscillator

393. Draw a block diagram depicting the use of PLL as a
frequency synthesizer?

Voltage f
fr Phase Loo N
Crﬁrls.lal el > FiIteF; Controlled —
Oscillator 4 Oscillator
Programmable
fo/N Divider (1/N)

Here fr is the reference frequency and fo is the output frequency such tha t
fr = fo/ N , which implies tha t fo = N*fr

6.4 Coverage

— . —O=

Coverage is defined as the percentage of verification objectives that have
been met. It is used as a metric for evaluating the progress of a verification
project. Coverage metric forms an important part of measuring progress in
constrained random testbenches and also provides good feedback to the
quality and effectiveness of constrained random testbenches. Broadly there
are two types of coverage metrics - Code Coverage and Functional
Coverage. While code coverage is generated automatically by simulators,
Functional coverage is user defined and normally implemented using
constructs supported by SystemVerilog language. This section has questions
related to the coverage concepts as well as the SystemVerilog language
constructs used for implementing functional coverage model.

394. What is the difference between code coverage and functional
coverage?

There are two types of coverage metrics commonly used in Functional
Verification to measure the completeness and efficiency of verification
process.

1) Code Coverage: C ode coverage is a metric used to measure the

degree to which the design code (HDL model) is tested by a given test
suite. Code coverage is automatically extracted by the simulator when
enabled.

2) Functional Coverage: Functional coverage is a user-defined
metric that measures how much of the design specification, as
enumerated by features in the test plan, has been exercised. It can be
used to measure whether interesting scenarios, corner cases,
specification invariants, or other applicable design conditions —
captured as features of the test plan — have been observed, validated,
and tested. It is user-defined and not automatically inferred. It is also

not dependent on the design code as it is implemented based on design
specification.

395. What are the different types of code coverage?

Code coverage is a metric that measures how well the HDL code has been
exercised by the test suite. Based on the different program constructs, code
coverage are of following types:

1) Statement/Line coverage : This measures how many statements
(lines) are covered during simulation of tests. This is generally
considered important and is targeted to be 100% covered for
verification closure. In the following example code, you can see there
are 4 lines or statements which will be measure in statement/line
coverage.
always @ (posedge clk) begin
if (A>B) begin //Line1
Result=A -B; //Line2
end else begin //Line 3
Result = A + B; //Line 4
end
end

2) Block coverage : A group of statements between a begin-end or
if-else or case statement or while loop or for loop is called a block.
Block coverage measures whether these types of block codes are
covered during simulation. Block coverage looks similar to statement
coverage with the difference being that block coverage looks for
coverage on a group of statements. In the same example code as
shown below you can see there are three blocks of code (Enclosed in 3
begin ... end)
always @ (posedge clk) begin //always block
if (A>B) begin //if block
Result=A-B;
end else begin // else block
Result = A + B;

end
end

3) Branch/Decision coverage: Branch/Decision coverage evaluates
conditions like if-else, case statements and the ternary operator (?:)
statements in the HDL code and measures if both true and false cases
are covered. In the same example above there is a single branch (if A
>B) and the true and false conditions will be measured in this type of
coverage.

4) Conditional Coverage and Expression coverage : Conditional

coverage looks at all Boolean expressions in the HDL and counts the

number of times the expression was true or false . Expression coverage

looks at the right-hand side of an assignment , evaluates all the

possible cases as a truth table and measures how well those cases are

covered. Following is an expression of 3 boolean variables that can

cause th e Resul t variable to be true of false

Result = (A && B) || (C)
You can create a truth table as follows for all possible cases of A, B and

C that can cause result to be true or false. The expression coverage gives a
measure of if all the rows of this truth table are covered.

A B C Result
0 0 0 0
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

5) Toggle coverage: Toggle coverage measures how well the signals
and ports in the design are toggled during the simulation run. It will

also help in identifying any unused signals that does not change value.

6) FSM coverage: FSM coverage measures whether all of the states
and all possible transitions or arcs in a given state machine are covered
during a simulation.

396. During a project if we observe high functional coverage
(close to 100%) and low code coverage (say < 60%) what can
be inferred?

Remember that code coverage is automatically extracted by simulator based
on a test suite while functional coverage is a user defined metric. A low code
coverage number shows that not all portions of the design code are tested
well. A high functional coverage number shows that all the functionalities as
captured by the user from the test plan are tested well. If coverage metric
shows low code coverage and a high functional coverage then one or more
of following possibilities could be the cause:
1) There could be lot of design code which are not used for the
functionality implemented as per design specification. (also known
and dead code)
2) There is some error in the user defined functional coverage
metrics. Either the test plan is not capturing all the design
features/scenarios/corner cases or implementation of functional
coverage monitors for same is missing. The design code not covered in
code coverage could be mapping to this functionality.
3) There could be potential bugs in implementing functional
coverage monitors causing them to be showing as falsely covered.
Hence it is important in the verification project to have proper reviews
of the user defined functional coverage metrics and its implementation.

397. During a project if we observe high code coverage (close to
100%) and low functional coverage (say < 60%) what can be
inferred?

If coverage metric shows high code coverage and a low functional coverage
then one or more of following possibilities could be the cause:
1) \ I g I e
Hence the code for same is missing while functional
coverage metrics exists with no test
2) There could be potential bugs in the functional coverage monitor
implementation causing them to be not covered even though tests
might be simulated and exercising the design code.
3) There could be a possibility that tests and stimulus exists for
covering all features but those might be failing because of some bugs
and hence being excluded from the measurement for functional
coverage.

398. What are the two different types of constructs used for
functional coverage implementation in SystemVerilog?

System Verilog language supports two types of implementation - one using
covergroups and the other one using cover properties.

covergroups: A covergroup construct is used to measure the number of
times a specified value or a set of values happens for a given signal or an
expression during simulation. A covergroup can also be useful to measure
simultaneous occurrence of different events or values through cross
coverage. Similar to a class, once defined, a covergroup instance can be
created using the new() operator. A covergroup can be defined in a package,
module, program, interface, checker, or a class.

cover-properties: A cover property construct can be used to measure
occurrences of a sequence of events across time. This uses the same
temporal syntax used for creating properties and sequences used for writing
assertions.

399. Can covergroups be defined and used inside classes?

Yes, covergroups can be defined inside classes and it is a very useful way to
measure coverage on class properties. This is useful to implement functional

coverage based on testbench constructs like transactions, sequences,
checkers, monitors, etc.

400. What are coverpoints and bins?

A coverage point (coverpoint) is a construct used to specify an integral
expression that needs to be covered. A covergroup can have multiple
coverage points to cover different expressions or variables. Each coverage
point also includes a set of bins which are the different sampled values of
that expression or variable. The bins can be explicitly defined by the user or
automatically created by language.
In the following example there are two variables a and b and the covergroup
has two coverpoints that look for values of a and b covered .
The coverpoint cp_ a is user defined and the bins values_a looks for
specific values of a that are covered.
The coverpoint cp_ b is automatic and the bins are automatically derived
which will be all the possible values of b .
bit[2:0]a;
bit[3:0]b;
covergroup cg (@(posedge clk);
cp_a : coverpoint a {
bins values_ a={[0,1,3,5,7] };
}
cp_b : coverpoint b ;
endgroup

401. How many bins are created in following examples for
coverpoint cp_a ?
bit[3:0] var_a;
covergroup test_cg @(posedge clk);
cp_a : coverpoint var_a {
bins low_bins [|={[0: 3]};
bins med_bins = {[4:12]};
}

endgroup

Four bins are created fo r low_bins[] where each of the bin look for the
specific value from O to 3 for coverage hit separately. One bin is created fo r
med_bin s which will look for any value between 4 and 12 for it to be
covered.

So, total5 bins are created for the coverpoint cp_a.

402. What is the difference between ignore bins and illegal bins?

ignore_bins are used to specify a set of values or transitions associated with
a coverage point that can be explicitly excluded from coverage. For
example, following will ignore all sampled values of 7 and 8 for the variable
a.
coverpoint a {
ignore_bins ignore_vals = { 7, 8 };

}

illegal_bins are used to specify a set of values or transitions associated with
a coverage point that can be marked as illegal. For example, following will
mark all sampled values of 1, 2, 3 as illegal.
covergroup cg3;
coverpoint b {
illegal_bins bad_vals=1{ 1,2, 3 };
}
endgroup
If an illegal value or transition occurs, a runtime error is issued. Illegal bins
take precedence over any other bins, that is: they will result in a run-time
error even if they are also included in another bin.

403. How can we write a coverpoint to look for transition
coverage on an expression?

Transition coverage is specified as “valuel => value2” where valuel and
value2 are the sampled values of the expression on two successive sample

points. For example, (helowicoverpoinalooks formansisionofivaniableysn

for values of 4, 5 and 6 in three successive positive edges of clk.
covergroup cg (@(posedge clk);

coverpoint v_a {
bins sa =[(AESS=60

endgroup

404. What are the transitions covered by following coverpoint?
coverpoint my_variable {
bins trans_bin [=(a,b,c=>x,Yy);

}

This will expand to cover for all of the transitions as below:
a=>x, a=>y, b=>x, b=>y, c=>x, c=>y

405. What does following bin try to cover?
covergroup test_cg @(posedge clk);
coverpoint var_a {
bin hit bin={3[*4 |};
}

endgroup

The [*N] is ajconsecutiverepetitionoperation Hence, above bin is trying to

cover a transition of the signal var_a for 4 consecutive values of 3 across
successive sample points (positive edge of clk).

406. What are wildcard bins?

By default, a value or transition bin definition can specify 4-state values.
When a bin definition includes an X or Z, it indicates that the bin count

should only be incremented when the sampled value has an X or Z in the
same bit positions, i.e., the comparison is done using ===. A wildcard bin
definition causes all X, Z, or ? to be treated as wildcards for 0 or 1.
For example:

coverpointa [3:0 | {

wildcard bins bin_12 to 15={ 4 'b117?? };

}
In the above bin_12 to_15, lower two bits are don't care and hence if
sampled value is any of 1100, 1101, 1110 or 1111, then the bin counts same.

407. What is[€F0SSI€OVEFrage? When is cross coverage useful in
Verification?

A coverage group can specify cross coverage between two or more coverage
points or variables. Cross coverage is specified using th e cros s construct.
Cross coverage of a set of N coverage points is defined as the coverage of all
combinations of all bins associated with the N coverage points which is
same as the Cartesian product of the N sets of coverage point bins.
bit[31:0] a_var;
bit[3:0 | b_var;
covergroup cov3 @(posedge clk);
Cp_a . coverpoint a_var {
binsyy [={[0:9]};
}
cp_b: coverpoint b_var;
cc_a_b :crosscp_b, cp_a;
endgroup

In the above example, we define a cross coverage between coverpoints cp_a
and cp_b. The cp_a will have 10 bins that look for values from 0 to 9 while
cp_b will have 16 bins as b_var is a 4 bit variable. The cross coverage will
have 16*10 = 160 bins.

A cross coverage can also be defined between a coverpoint and a variable in
which case an implicit coverpoint will be defined for that variable.

Cross coverage is allowed only between coverage points defined within the
same coverage group.

Cross coverage is useful in verification to make sure that multiple events or
sample values of expressions are happening simultaneously. This is very
useful because a lot of time it is important to test the design for different
features or scenarios or events happening together and cross coverage helps
to make sure all those combinations are verified.

408. How many bins are created by following cross coverage?
bit[1:0 | cmd;
bit[3: 0 | sub_cmd;
covergroup abc_cg @(posedge clk);
a_cp : coverpoint cmd;
cmd_x_sub : cross cmd , sub_cmd;
endgroup

The a_cp will generate 4 automatic bins as cmd is a 2 bit signals. Crossing a
coverpoint with a variable will cause SystemVerilog to create an implicit
coverpoint for the variable. Hence, an implicit coverpoint for sub_cmd will
be created which will have 16 automatic bins. Therefore, the cross
coverage will generate 4*16= 64 bins

409. What can be wrong with following coverage code?
int var_a;
covergroup test_cg @(posedge clk);
cp_a : coverpoint var_a {
binslow={0,1 };
bins other [] =
}

endgroup

This covergroup has a coverpoint that tries to cover the sampled values of an
integer which can be 2 ** values. The first bin looks for two values 0 and 1,
while the second bin that uses default creates a separate bin for all other

values (2 * -2). This can cause a simulator to crash as the number of bins is
huge . The usage of default should be avoided as much or used with care.

410. What are the different ways in which a covergroup can be
sampled?

A covergroup can be sampled in two different ways:

1) By specifying a clocking event with the covergroup definition:
If a clocking event is specified then all the coverage points defined in
the covergroup are sampled when the event is triggered. For example
in the code below, the clocking event is defined as posedge of the
clock (clk). So the covergroup is sampled on every positive edge of
clock and the coverpoints are evaluated and counted.

covergroup transaction_cg (@(posedge clk)

coverpoint req_type ;
endgroup

2) By explicitly calling the predefined sample() method of
covergroup : Sometimes you would not want the covergroup to be
sampled on every clock edge or any general event that happens
frequently. This is because the expression or variable that you are
sampling may not be changing very frequently. In this case, the
predefined metho d sample() can be called explicitly when any of
the signals or expressions in the covergroup changes. This is a useful
way when covergroups are defined inside classes. For example in the
following reference code, the covergroup (pkt_c g) is defined inside
a class and instantiated inside the constructor. In the test module, the
covergroup sample() method is called each time a new packet is
created to measure the coverage.
class packet;
byte [4] dest_addr;
byte [4] src_addr;

group pkt_cg;
coverpoint dest_addr;

endgroup

function new ();
pkt_cg = new ()
endfunction;
endpacket

module test;
initial begin
packet pkt = new ();
pkt . pkt_cg . sample ()
end
endmodule

Covergroups can include arguments using syntax similar to tasks and
functions. Signals can be passed to the covergroup using the “ref” keyword
as shown in the example below. Usage of arguments in covergroup is very
useful when we want to define a covergroup and reuse the same for multiple
instances but with different signals/variables being passed.

For example in the below module test, there is a Xy_cg that takes two
reference signals and creates a generic covergroup. The example further
shows creating two instances of this covergroup by passing signals from two
different modules.

module test;
covergroup xy_cg (ref int x , ref int y , input string name);
Cp_X : coverpoint X ;
Cp_y : coverpoint y ;
CC_X_Y : Cross cp_x, Cp_y;
endgroup

initial begin

xy_cg xy_cg_modl = new (top . mod1 . x, top. mod1l .y, " modl_cvg

H)’
xy_cg xy_cg_mod2 = new (top . mod2 . x, top . mod2 . y, " mod2_cvg
H);
end
endmodule

412. Can coverpoints inside a covergroup reference hierarchical
signals in a design?

Yes, coverpoints inside a covergroup can reference signals in design using
the hierarchy.

413. Can we have cross coverage between coverpoints in different
covergroups?

No, cross coverage is only possible for coverpoints in same covergroup.

414. What is the difference between coverage per instance and
per type? How do we control the same using coverage
options?

A covergroup can be defined and instantiated multiple times. If there are
multiplesinstaneesiof a covergroup, then(by default SystemVerilog reports
the/coverage for that group as cumulative coverage across all instances. This
default behavior is coverage per covergroup type. However, there is a
per_instance option that can be set inside a covergroup and then
SystemVerilog will report coverage separately for each instance of the
covergroup.
covergroup test_cg (@(posedge clk)

option . per_instance = 1

coverpoint var_a;

//and other coverpoints

endgroup

6.5 Assertions

An assertion specifies a behavior of the system. Assertions are primarily
used to validate the behavior of a design. In addition, assertions can also be
used to provide functional coverage, and to flag that input stimulus, which is
used for validation. Assertions can be checked dynamically by simulation, or
statically by property checking or formal verification tools.

SystemVerilog supports rich constructs to implement assertions in terms of
sequences and property specifications. This section will cover commonly
asked questions related to SystemVerilog Assertions and methodology and
help you understand these better.

415. What is an assertion and what are the benefits of using
assertions in Verification?

An assertion is a description of a property of the design as per specification
and is used to validate the behavior of the design. If the property that is
being checked for in a simulation does not behave as per specification, then
the assertion fails. Similarly if a property or rule is forbidden from
happening in the design and occurs during simulation, then also the assertion
fails.
Following are some of the benefits of using Assertions in Verification:
1) Assertions improve error detection in terms of catching
simulation errors as soon a design specification is violated
2) Assertions provide better observability into design and hence help
in easier debug of test failures.
3) Assertions can be used for both dynamic simulations as well as in
formal verification of design
4) Assertions can also be used to provide functional coverage on
input stimulus and to validate that a design property is infact

simulated.

416. What are different types of assertions?

There are two types of assertions defined by SystemVerilog language -
immediate assertions and concurrent assertions.

417. What are the differences between Immediate and
Concurrent assertions?

Immediate assertions use expressions and are executed like a statement in a
procedural block. They are not temporal in nature and are evaluated
immediately when executed. Immediate assertions are used only in dynamic
simulations. Following is an example of a simple immediate assertion that
checks “if a and b are always equal”:
always_comb begin
a_eq_b : assert (a ==b) else $error (" A not equal b ");

end

Concurrent assertions are temporal in nature and the test expression is
evaluated at clock edges based on the sampled values of the variables
involved. They are executed concurrently with other design blocks. They can
be placed inside a module or an interface. Concurrent assertions can be used
with both dynamic simulations as well static (formal) verification. Following
is a simple example of a concurrent assertion that checks “if c is high on a
clock cycle, then on next cycle, value of a and b is equal”:

ap_a_eq_b : assert property ((@ posedge clk) c|=>(a==b));

418. What is the difference between simple immediate assertion
and deferred immediate assertions?

Deferred assertions are a special type of immediate assertions. Simple
immediate assertions are evaluated immediately without waiting for
variables in its combinatorial expression to settle down. Hence, simple
immediate assertions are very prone to glitches as the combinatorial
expression settles down. This can cause the assertions to fire multiple times
and some of them could be false.

To avoid this, deferred assertions are defined which gets evaluated only at
the end of time stamp when the variables in the combinatorial expression
settles down. This means they are evaluated in the reactive region on the
timestamp.

419. What are the advantages of writing a checker using SVA
(SystemVerilog Assertions) as compared to writing it using a
procedural SystemVerilog code?

Certain types of checkers are better written using SVA rather than procedural
code. The languages supports rich constructs to implement sequence and
property specifications and this becomes easier than using procedural code
or writing class based checkers. The other added benefit is that the same
assertions can also be used in static checking tools like a Formal Verification
tool as well as in providing functional coverage.
Some examples where SVA can be used better are following:
1) Checking of internal design structures like FIFO’s overflowing or
underflowing.
2) Checking of internal signals and interfaces between modules can
be easier done with embedded assertions in design
3) Checkers for standard interface protocols like PCIE, AMBA,
Ethernet, etc. can also be easily developed using the temporal
expressions.
4) Checks for arbitration, resource starvation, protocol deadlocks,
etc. are normally candidates for Formal Verification in any design and
hence writing assertions for these will help them to be used in both
static and dynamic simulations.

420. What are the different ways to write assertions for a design
unit?

1) Assertions can be written directly inside a design module. This is
mostly followed if the assertions are written by design engineers for
some of the internal signals or interfaces in the design.

2) Assertions can also be written in a separate interface or module or
program and then that can be bound to a specific module or instance
from which signals are referenced in assertion. This is done using the
bind construct in SystemVerilog. This method is generally followed if
the assertions are written by the Verification engineers.

421. What is a sequence as used in writing SystemVerilog
Assertions?

A sequence is a basic building block for writing properties or assertions. A
sequence can be thought of a simple boolean expression that gets evaluated
on a single clock edge or it can be a sequence of events that gets evaluated
across multiple cycles. A property may involve checking of one or more
sequential behaviors beginning at various times. A property can hence be
constructed using multiple sequences combined logically or sequentially.
The basic syntax of a sequence is as follows:

sequence name_of_sequence;

<boolean expression >
endsequence

For Example: The following sequence samples values of a and b on every
positive edge of clk and evaluates to true if both a and b are equal.
sequence s_a_eq_b;
@ posedge (clk) (a==b);
endsequence

422. Is there a difference betwee n $rose(tst_signal) and
@posedge(tst_signal)?

Yes, there is a difference. @posedge(tst_signal) waits until a rising edge
event is seen on the tst_signal . However, $rose() is a system function that
checks if the sampled value of the signal changed to 1 between previous
sample and the current sample (Previous sample could be a 0/x/z).
Accordingly, $rose(tst_signal) only returns true if there are at least two
sampled values.
For example: In the following sequence, only if the signal “a” changes from
a value of 0/x/z to 1 between two positive edge of clock, then $rose(a) will
evaluate true

sequence S1;

@(posedge clk) $rose(a);
endsequence

423. When does following sequence evaluate to true?
sequence S1;
@(posedge clk) $rose (a);

endsequence
1) When the signal “a” changes from O to 1.
2) When the signal “a” had a value of “0” at one posedge of
clk which changes to “1” at the next posedge of clk.
3) When the signal “a” had a value of “1” at one posedge of
clk and “0” at the next posedge of clock.

2). The $rose() system function evaluates to true if the value changes from 0

to 1 when sampled on two consecutive clock cycles as explained in previous
question.

424. Can a sequence be declared in?

1) Module
2) Interface
3) Program

4) Clocking Block
5) Package

Yes, a sequence can be declared in any of the above.

425. Is it possible to have concurrent assertions implemented
inside a class?

No, concurrent assertions cannot be implemented inside a class

426. Explain when the following sequence matches?
req ##2 gnt ##1 Ireq

When gnt signal goes high two cycles after req signal is high, and one cycle
after that req signal is deasserted to zero, this sequence will evaluate to true.

If a sequential expression needs to be evaluated for more than one iteration,
then instead of writing a long sequence, repetition operator can be used to
construct a longer sequence. SVA supports three types of repetition
operators:

1) Consecutive Repetition ([*const_or_range_expression]): If a
sequence repeats for a finite number of iterations with a delay of one
clock tick from end of one iteration, then a consecutive repetition
operator can be used. Following is an example of how to use
consecutive repetition operator.

a ##1 b [*5]

In above example, if “a” goes high and then if “b” remains high for 5
consecutive cycles, we can use the repetition operator [*] to specify
number of iterations.

2) Go-to repetition ([->const_or_range_expression]): Go-to
repetition specifies finitely many iterative matches of the operand
Boolean expression, with a delay of one or more clock ticks from one
match of the operand to the next successive match and no match of the
operand strictly in between. The overall repetition sequence matches at
the last iterative match of the operand.

a ##1 b [->2:10] ##1 c
In the above example, the sequence matches over an interval of
consecutive clock ticks provided a is true on the first clock tick, c is

true on the last clock tick, BiSEFISORHEPERUIGMAECIGERNEICE, and,
including the penultimate, fhefe are At least 2 and A most 10 mer

3) Non-consecutive repetition [=const_or_range_expression]): The
Non-consecutive repetition is like the Go-to repetition except that a
match does not have to end at the last iterative match of the operand
Boolean expression

a ##1 bl[E2010]##1 c
Above sequence shows the same example using non-consecutive
repetition. The difference between this repetition and the Go-to
repetition is that in this case: after we see a minimum of 2 and
maximum of 10 occurrences of non-consecutive b, _
several cycles where b is not true and then ¢ can be true. Whereas, in a
sequence that uses Go-to repetition, after the maximum number of b
occurrences are seen, next cycle needs to have c as true.

428. Find any issue (not syntax errors) with following assertion?
module test (input clk , input a, inputb) ;
assert_1 : assert (a && b);
endmodule ;

Immediate assertions can be started only inside procedural blocks

429. Write an assertion check to make sure that a signal is high
for a minimum of 2 cycles and a maximum of 6 cycles.

Following property uses a sequence such that if a signal “a” rises, then
from same cycle, we check it remains high for a minimum of 2 and
maximum of 6 cycles and in the next cycle “a” goes low.

property a_min_2_max_6 : lge clk
$ a)|->al] ##1 (a==0)
endproperty

property (a_min_2_max_6);

430. What is an implication operator?

An implication operator specifies that the checking of a property is
performed conditionally on the match of a sequential antecedent. This
construct is used to precondition monitoring of a property expression and is
allowed only at the property level. Following is the syntax of two types of
implication operators supported in property expressions:
1) Overlapped Implication Operator (|->)
assert property prop_name (sequence_expr |-> property_expr)

2) Non-Overlapped Implication Operator (|[=>)
assert property prop_name (sequence_expr |[=> property_expr)
In above examples, the left hand side of the implication operator is called
antecedent and the right hand side of the operator is called consequent. The
antecedent is the precondition that needs to happen before evaluating the
consequent.

431. What is the difference between an overlapping and
nonoverlapping implication operator?

Overlapped Implication Operator (|->): For overlapped implication, if
there is a match for the antecedent sequence_expr, then the endpoint of the
match is the start point of the evaluation of the consequent property

expression. For Example: In following example, as soon as a match happens
on the sequence (a==1), in the same cycle if “b” is true and the following
cycle “c” is true then this property passes.

assert property abc_overlap (@posedge clk (a==1) |-> b ##1 c)

Non-Overlapped Implication Operator (|=>): For non overlapped
implication, the start point of the evaluation of the consequent property_expr
is the clock tick after the end point of the match of antecedent. For Example:
In following example, when (a==1) matches on any clock cycle, then in next
cycle if “b” is true and a cycle later if “c” is true, then following property
will pass.

assert property abc_overlap (@posedge clk (a==1) |[=> b##1c)

432. Can implication operator be used in sequences?

No, it can be used only in properties. It is a precondition match to evaluate
property expressions.

433. Are following assertions equivalent?
1) @(posedge clk) req |=> ##2 $rose(ack);
2) (@(posedge clk) req |-> ##3 $rose(ack);

Yes: |->is an overlapping operator that starts evaluating the consequent in

same cycle when antecedent is true while |=> is non overlapping operator

that starts consequent evaluation a cycle after antecedent is true. So, adding
an explicit cycle delay after overlapping operator will make it equivalent to
non-overlapping operator.

434. Is nested implication allowed in SVA?

Yes. These are useful when we have multiple gating conditions leading to a
single final consequence. For Example: a|=>b|=>c

Here, when “a” is true, then next cycle “b” is evaluated and then if found
true, next cycle “c” is evaluated, and if found true, the property passes.

435. What does the system task $past() do?

$past is a system task that is capable of getting values of signals from
previous clock cycles.

436. Write an assertion checker to make sure that an output
signal never goes X?

The system function Sisunknown(signal) returns a value of 1 if the signal has
an unknown value (x). Hence this can be used to write an assertion as
below.

assert property (@(posedge clk) ! $isunknown(mysignal));

437. Write an assertion to make sure that the state variable in a
state machine is always one hot value.

The Sisonehot() system function returns if a bit vector is one hot. Hence, this
can be used to write an assertion as follows:
assert property (@(posedge clk) $isonehot(state));

438. Write an assertion to make sure that a 5-bit grant signal only
has one bit set at any time? (only one req granted at a time)

The system function $Scountones() will return the number of ones present in a
signal. Hence, this can be used to write an assertion to check for number of
bits set in any signal as follows:

assert property (@(posedge clk) $countones(grant[5:0])==1);

439. Write an assertion which checks that once a valid request is
asserted by the master, the arbiter provides a grant within 2
to 5 clock cycles

property p_req_grant;
@(posedge clk) $rose (req)|=> ##[2:5] $rose (gnt)

endproperty

440. How can you disable an assertion during active reset time?

A property can use a “ disable iff“ construct to explicitly disable an
assertion. Following is an example that disables an assertion check

assert property (@(posedge clk) disable iff (reset) a |=> b);

441. What’s the difference between assert and assume directives
in SystemVerilog?

An assert directive is used to specify the property as an obligation for the
design that is to be checked to verify that the property holds.

An assume directive is same as assert in simulation. It is used to specify the
property as an assumption for the environment. Simulators check that the
property holds, while formal tools use the assume directive as a constraint
information to generate input stimulus.

442. What is bind construct used in SystemVerilog for?

The bind construct in SystemVerilog is used to externally instantiate (or
bind) a module or interface or checker to a target module or an instance of
module. This is useful for any instrumentation code or assertions that are
encapsulated in a module, interface, program, or checker to be instantiated in
a target module or a module instance without modifying the target module
code.

The syntax is:
bind < target module / instance > < module / interface to be
instantiated> <instance name with port map>

For example, following code shows an interface named “range” which has
an assertion implemented as shown below

interface range (input clk , enable , int minval , expr);
property crange_en;
@(posedge clk) enable |-> (minval <= expr);
endproperty
range_chk : assert property (crange_en);
endinterface

1) This could be instantiated (bind) inside a module - say called as
cr_unit as shown below. Effectively every instance of module cr_unit
will also have an instance of this interface (r1)

bind cr_unit range r1 (c_clk, c_en, v_low ,(in1 && in2));

2) If we want to instantiate (bind) the interface only with a very
specific instance of the module cr_unit (let’s say cr_unit_1), then we
can use following as example:

bind cr_unit:cr_unit_1 range r1 (c_clk, c_en, v_low ,(inl && in2

));

443. How can all assertions be turned off during simulation?

Assertions can be turned off during a simulation using th e $assertoff()
system task. If no arguments are specified, all the assertions are disabled.
If this system task is called in the middle of simulation, then any active
assertions at that given point of time are allowed to complete before
disabling.
For selectively disabling assertions, the task supports two arguments as
follows:

$assertoff [(levels [, list])]

The first argument specifies how many levels of hierarchy this applies and
the second argument is a list of properties that need to be turned off in these
levels of hierarchy.

444. What are the different ways in which a clock can be specified
to a property used for assertion?

There are different ways in which a clock can be specified to a property as
explained below:
1) A sequence instance that is used in property has an explicit clock
specified. In this case property uses that clock.

sequence seql;

posedge clk) a ##1 b; N . "
endsequence X S)S?e*r\t [WL CC«_C(dy
v Peret.

property propl;

not seq1;
endproperty ()/h:‘ Pe";gf

assert property (propl);

2) Specify the clock explicitly in the property. ,S\ (e~ CRL
property propl;
‘posedge clk) not (a ##1 b);
endproperty
assert property (prop1);

3) Infer the clock from the procedural block in which the property is
used as shown below.
always @(posedge clk) assert property (not (a ##1 b));

4) If the property is defined in a clocking block, the clock of the
clocking block can be inferred in the property. The property can be
used to assert outside by hierarchical reference as shown below:
clocking master_clk @(posedge clk);
property propl ;
not (a ##1 b);

endproperty
endclocking
assert property (master_clk . prop1);

5) If none of the above is used, then the clock will be resolved to the
default clocking event. For Example: if a clocking block (shown
above) has defined a default clocking event (as shown below) then the
property infers the same clock.

default clocking master_clk ; / master clock as defined above

property p4 ;

not (a ##1 b);
endproperty
assert property (p4) ;

445. For a synchronous FIFO of depth=32, write an assertion for
following scenarios. Assume a clock signal (clk), write and
read enable signals, full flag and a word counter signal.

1) If the word count is >31, FIFO full flag is set.

2) If the word count is 31 and a new write operation
happens without a simultaneous read, then the FIFO full flag
gets set.

assert property posedge clk) G (W ordent
fifo_full

assert property (@(posedge clk) SN (wordcnt == 31 &&

write_en && ! read _en |=> fifo full)’

Note that for the second case, a non-overlapping implication operator is used
as the full flag will go high only in next cycle after write_enable is seen.

Chapter 7: Version Control Systems

Version Control Systems have been an integral part of Software Engineering
domain for a long-long time. But now they are slowly gaining popularity in
Hardware Engineering domain as well. With Hardware Designs becoming
more and more complex, various new design features getting integrated
every quarter, multiple folks working on the same database across different
sites, version control systems have become indispensable. Hence, this
section touches upon basics of various Version Control Systems.

After a few general questions, we look into basic commands for three most
popular Version Control Systems: CVS, GIT and SVN. This section aims at
making our readers familiar with different version control systems and
hence, we are providing basic commands which can help the readers refresh
their knowledge (applicable to readers who have worked on these systems
before), and get started with these systems (applicable to readers who are
new to Version Control Systems).

Note: There are lot of similarities in various commands used in different
version control systems.

7.1 General

446. What is a Version Control System?
A Version Control System is a database that stores all the change records of
your work.

447. What is the need of a Version Control System?
When multiple members of a team work together on a shared project, it is

important to keep incremental changes of all individual team members in
sync in a common database. A Version Control System helps in achieving

this by updating author’s incremental changes to a common database with
author’s name, changes made, and their comments. This information can be
accessed by other people whenever required.

448. What are some examples of Version Control Systems?

CVS (Concurrent Version Systems), GIT, SVN (Subversion), Perforce, etc.

449. What is a repository?
A repository is a central place where all the data/code is stored and

maintained. It’s a central storage where all the files and directories (which
are part of a project) are stored.

7.2 CVS

450. Whatis CVS?
CVS stands for “Concurrent Versions System” and it is a commonly used
version control system which is available for free.

451. How to add a new file or directory in the CVS database?
cvs add <filename>
This command adds the specified <filename> in the CVS database. Once

this filename is added, you need to “checkin” the file so that the actual file
contents are updated in the database.

452. How to check-in a file to a CVS database?

After adding a filename, you can put a file into the database using following
commands.

cvs checkin -m “message_here” <filename>, OR

cvs ci -m “message_here” <filename>, OR

cvs commit -m “message_here” <filename>

Where, -m “message_here”: is a message option to specify any short
information about the change. You can check-in as many as versions of a file
and each check-in gives you a new version number.

453. How to check out a file from CVS Database?

cvs checkout <filename>, OR
cvs co <filename>

Here, the <filename> can be a file or a directory (if you want to check-out
all files in a directory). By default above command will always get you the
latest version of the file. If you want to get a specific version of a file, you
need to use the version number as following:

cvs co -1 <version_number> <filename>

454. How to update files in your working environment to the
latest in CVS database?

Once you have checked out a database or a set of files/directories, there may
be other users who could modify the same or different files in the central
database, and you would want these changes to reflect in your workspace at
regular intervals.

For this, you need to use the “cvs update” command which works in a way
similar to checkout command. Following command updates all the file/files
which were updated in the CVS but were not synced with your working
environment.

cvs update < filename>, OR

cvs up <filename>

455. What is tagging and how to tag a file?

Tagging is a very useful feature provided by version control systems. While
working on a shared project database with a group of people, you might
want to add checkpoints to the database at regular intervals, (For Example:
when a project reaches intermediate milestones). This is possible by
associating a tag with all the files (in a database) that might have different
versions.

You can provide a same tag to all the relevant files from different versions
and you can retrieve them anytime by supplying the tag name. To tag a file,
following command is used:

cvs tag <filename>

456. How to check-out a set of files (in a module) from a given
tag?

If you want to get all the files from the repository with a given tag, you can
use following command:
cvs co -I <tag> <module_name>

457. How can you delete a tag?
Following command is used to delete tag information from a file:
cvs rtag -d <tagname> <filename>
458. How to find difference between files from two different
versions?
If you want to know the difference between the files from two different CVS

versions, you can use following command:
cvs diff -r <version1> -r <version2> <filename>

459. How can you see the check-in log messages for a file?
Log messages, which were given at the time of check-in with -m option, can
be seen by using;:
cvs log <filename>
460. How can you check the status of a file?
To know the status of a file i.e. to check if a file is in sync with the file in the

central database or if it has been modified locally, use:
cvs status <filename>

461. How can you view the tag information with the status of a
file?

To view the tag information with the status, use following command:
cvs status -v <filename>

7.3 GIT

462. Whatis GIT?

GIT is one of the most widely used open source version control system both
for software development as well as hardware design. It is also available for
free and is a distributed revision control system.

463. What’s the advantage of using GIT over CVS?

CVS only tracks changes to single files whereas GIT tracks entire source
trees with a global view.
464. What would git command “git init” do?
It would Initialize/Create a GIT repository.
465. What git command is used to create a git repo for your
personal changes/development?
git clone <repository_to_be_cloned>
466. Which command is used to fetch the latest updates from
other repositories?
git pull <repository_from_which_updates_are_to_be_fetched>
467. Which command is used to publish your changes to the
group?
git push
468. Where does git keep track of what version you have checked
out?
GIT keeps track of what version you have checked out in HEAD. HEAD
points to a branch which contains a SHA1 hash. Following git command is

used to find out this information:
git head

469. How do you rename a file in GIT?
It is a two-step process:

git mv <filename> <new_filename>
git commit <new_filename>

470. What command is used to view the history of commits to a
file or
directory?
git log <filename>
471. 'What command is used to see line-by-line details regarding
who changed a file?
git blame <filename>
472. 'What command is used to show differences between commits
or branches?
git diff <commit1> <commit2>
473. What git command is used to undo changes made to a file in
your local repository?
git reset <filename>
474. How can you temporarily save changes before
pulling/merging or switching branches?

git stash

475. 'What git command is used to move your changes since your
last commit to the staging area?

git add <filename(s)>
476. 'What git command is used to store the saved changes in the
repository and add a message "first commit"?
git commit -m "first commit"
477. How do you revert a commit that has already been pushed
and made public?

git revert HEAD~2..HEAD

7.4 SVN

478. Whatis SVN?

SVN stands for “Subversion” and it is a open source version control system.

479. Whatis "branch" , "Tag" and "Trunk" in SVN?

Trunk is the main body of development, originating from the start of the
project till the end.

Branch is a copy of code derived from a certain point in the trunk that is
used for applying major changes to the code while preserving the integrity of
the code in the trunk.

Tag is a point in time on the trunk or a branch that you wish to preserve.
This is like baselining the code after a major release.

480. What is the difference between Update and Commit?
Update is used to update your local workspace with the changes committed
by the team to the repository whereas Commit is the process to push changes
from your local area to repository.

481. What is the SVN command to add a file or dir?

svn add <file_or_directory_name>

482. What is the command to create a new directory in SVN?
svn mkdir <new_directory_name>
483. What is the command to view the difference between the
local version and repository version of a file?

svn diff <filename>

484. What does the result codes G and R in SVN indicates?

G code: Changes on the repo were automatically merged into the working
copy.

R code: This code indicates that item has been replaced in your working
copy. This means the file was programmed or scheduled for deletion, and a
new file with the same name was scheduled for addition in its place.

485. What is the command to create a new tag from the trunk?

svn copy http://example.svm.com.../repo/trunk
http://example.svm.com.../repo/tags/new_tag -m “creating a new tag from
trunk”

486. What is the function of Revert in subversion?
Revert function will remove your local changes and reload the latest version

from the repository.
Command: svn revert <filename>

Chapter 8: Logical Reasoning/Puzzles

Logical Reasoning Questions and Puzzles form an important part of an
interview process. These are aimed towards checking aptitude and logical
problem solving skills of an interviewee. For VLSI Verification interviews,
these can be broadly classified into three categories:

1) Related to Digital Logic,

2) General Reasoning, and

3) Lateral Thinking.

In most of the cases, interviewers usually don’t worry too much about the
final answer, but what is really looked at is the approach you take to solve a
problem. Hence, it’s important to explain your approach and thought process
to an interviewer. In this section, we have tried to list down and cover
different types of puzzles through limited number of questions that can give
you a good background and flair of puzzles asked. To highlight the approach
taken to solve these puzzles, we have provided detailed explanations in the
answers.

8.1 Related to Digital L.ogic

For Digital VLSI verification interviews, puzzles relating to Digital Logic
are of prime importance as they help recruiters test your digital logic skills
as well as your aptitude and your thinking/reasoning ability.

487. Implement following digital gates ONLY using mathematical
operations i.e. ONLY using +, -, *
1) Single Input NOT Gate (input A, output X)
2) Dual Input AND Gate (inputs A, B, output X)
3) Dual Input OR Gate (inputs A, B, output X)

1) X =1-A (Can be easily driven from truth table of NOT gate)

2) X =A*B (Simple multiplication)
3) X=A+B-A*B
From truth table of OR gate, we can say that: X’ = (A’.B’)

=X =(A’.B’Y

=> X =[(1-A).(1-B)]’ (NOT gate: A’ = 1-A, as shown in the first part
of this answer)

=> X =[(1-A)*(1-B)]’ (AND gate A.B = A*B, as shown is the second
part of this answer)

=>X=[1-(1-A)*(1-B)]=A+B-A*B

488. You have 100 coins laying flat on a table. Each coin has two
sides: a tail and a head. 10 of them are placed heads up and
90 are placed tails up. You can’t feel, see or in any other way
find out which side is up. Now, split the coins into two piles
such that there are equal numbers of heads up in each pile.

Make two piles of the coins. Put 10 coins in one pile and 90 coins in another.
Flip all the coins in Pile-1 (the pile with 10 coins). Now, both the piles have
equal number of heads up. (Note that there were a total of 10 out of 100
coins placed with heads up and 90 with tails up)

To get more clarity on this answer, assume that Pile-1 you made had only 3
coins with heads up and hence remaining 7 coins with heads up went to Pile-
2. If you flip all the coins in Pile-1, Pile-1 will also have 7 coins with heads

up.

489. You are given eight identical looking balls. One of them is
heavier than the rest of the seven (all the others weigh
exactly the same). You are provided with a simple
mechanical balance to weigh the ball. What is the minimum
number of trials required to figure out the heavier ball?

Two trials will be needed.

Divide the balls in three groups. Group-1 with three balls, Group-2 with
three balls and Group-3 with two balls.

In the first trial, put three balls belonging to Group-1 on one side of the
balance and three balls belonging to Group-2 on other side of the balance.
Now there are two possibilities:

Possibility 1 : Both sides are equal. This would mean that heavier ball
belongs to Group-3 (group with two remaining balls). If this is the case, in
second trial: put one ball each from Group-3 on either side of the balance
and you would know the heavier ball.

Possibility 2 : Both sides are not equal. From the mechanical balance, you
would be able to figure out the Group having heavier ball. Now, in the
second trial: randomly pick up two balls from the heavier group and place
them on either side of the mechanical balance. Again, if both the sides are
equal, you know that 3rd ball in the same group is heavier. Else, you would
be able to see heavier ball from the balance.

490. Suppose there are 4 prisoners named W, X, Y, and Z.
Prisoner W is standing on one side of a wall, and prisoners X
Y and Z are standing on the other side of the wall. Prisoners
X, Y, and Z are all standing in a straight line facing right — so
X can see prisoner Y and Z, and Y can see prisoner Z. This is
what their arrangement looks like:

WI|XYZ
Where, the “||” represents a wall. The wall has no mirrors.
So, prisoner W can see the wall and nothing else. There are 2
white hats and 2 black hats and each prisoner has a hat on
his head. Each prisoner cannot see the color of his own hat,
and cannot remove the hat from his own head. But the
prisoners do know that there are 2 white hats and 2 black
hats amongst themselves. The prison guard says that if one
of the prisoners can correctly guess the color of his hat then
the prisoners will be set free and released. The puzzle for you
is to figure out which prisoner would know the color of his
own hat?
Note that the prisoners are not allowed to signal to each

other, nor speak to each other to give each other hints. But,
they can all hear each other if one of them tries to answer the
question. Also, you can assume that every prisoner thinks
logically and knows that the other prisoners think logically
as well.

Prisoner X or Prisoner Y.

As mentioned in the puzzle, Prisoner X can see the hats on the head of Y and
Z.If Y and Z have hats of same color on their head (either both white or
both black), X would know that in such a situation, he would be having a hat
of different color on his head and he would answer the color of the hat on his
head correctly.

Now, if X doesn’t answer the question for some time, Y would infer that
since X is not able to answer the question, Y and Z must be having hats of
different color on their heads. Hence, Y would be able to answer the
question after looking at color of hat on Z’s head. If Z has a white hat on his
head, Y would answer black, else white.

491. There are five persons. Out of these five, only one is the truth
teller and the remaining four are togglers i.e. that they may
tell the truth or may lie on being asked a question. But on
being asked again, they will switch i.e. if they told a lie the
first time, they will tell the truth on second question and vice
versa. You need to ask only two questions to determine who
the truth teller is. You can ask both the questions from the
same person or ask one question each from two different
people. How will you determine who is the truth teller?

Pick any one person and ask first question: “Are you the truth teller?”. Now,
there can be two responses to this question: “Yes” or “No”.

If the response to this question is Yes, then that person can be either a truth
teller or a toggler who is lying. In such a scenario, ask the same person
second question: “Who is the truth teller?” If the picked person is the truth
teller, his response to second question would be “I am the truth teller”.

Otherwise, if the picked person is a toggler who lied to first question, he
would have to tell truth for the second question and point to the truth teller.

Else if the response to first question is No, then that person is a toggler who
is telling the truth. Now, since the toggler has told the truth once, he would
lie to second question. Ask second question to this person: “Who is not the
truth teller?”, and you will find out the truth teller.

492. There are 100 prisoners in 100 different prisons. There is a
bulb in each prison which is controlled by a switch outside
that prison. Initially bulbs in the all the prisons are glowing.
In the first iteration, jailor toggles the bulb switches for each
and every prison (1, 2, 3, 4,, 100). In the second iteration,
jailor toggles the bulb switches only for every 2nd prison (2,
4, 6, 8, ..., 100). In the third iteration, jailor toggles the bulb
switches for every 3rd prison (3, 6, 9, 12, ..., 99). Jailor
repeats this exercise 100 times where in the 100th iteration he
toggles bulb switch for every 100th prison (100). What all
prisons will have bulb switched OFF after 100 such
iterations.

1, 4,9, 16, 25, 36, 49, 64, 81, 100 (Squares of a number are odd multiples)
Explanation: Initially all prisons have bulb ON and for the bulb to be OFF, it
should go through odd number of iterations. We can either answer this
question directly (if we know the fact that ONLY squares of a number are
odd multiples), or we can reach to this conclusion by writing down result of
100 iterations for first few prisons/bulbs (say 10). If we right down the
results of first 10 prisons:

Prison 1: Would toggle in first iteration only. Hence, this would turn OFF
and would never toggle to ON again.

Prison 2: Would get toggled twice (Iteration 1 and Iteration 2). Would restore
ON state.

Prison 3: Would get toggled twice (Iteration 1 and Iteration 3). Would restore
ON state.

Prison 4: Would get toggled thrice (Iteration 1, 2 and 4). Would hence turn
OFF.

Prison 5: Would get toggled twice (Iteration 1 and Iteration 5). Would restore
ON state.

Prison 6: Would get toggled four times (Iteration 1, 2, 3 and 6). Would
restore ON state.

Prison 7: Would get toggled twice (Iteration 1 and Iteration 7). Would restore
ON state.

Prison 8: Would get toggled four times (Iteration 1, 2, 4 and 8). Would
restore ON state.

Prison 9: Would get toggled thrice (Iteration 1, 3 and 9). Would hence turn
OFF.

Prison 10: Would get toggled four times (Iteration 1, 2, 5 and 10). Would
restore ON state.

Hence, we see that out of first ten prisons, only prison 1, 4 and 9 would have
bulb switched off after 100 iterations. This gives hint that squares of a
number are the ones with off multiples and hence we can extend this logic.

8.2 General Reasoning

493. Two bulbs of 10W and 100W are connected in series with an
AC power supply of 100V. Which bulb will glow brighter and
why?

10W bul b.

The bulbs are in series so the amount of current flowing through each is
same.

P = VA2/R =>R = VA2/P

R1 = 100A2/10 = 1000 ohms for 10 Watt bulb

R2 =100/2/100 = 100 ohms for 100 Watt bulb

Since both the bulbs are in series, applying Voltage division rule:

Voltage across 10 W bulb = 100*1000/(1000+100)=90.91 V
Voltage across 100 W bulb = 100*100/(1000+100)= 9.09 V

Power for 10 W bulb = VA2/R=90.91/2/1000= 8.26 W
Power for 100 W bulb = VA2/R=9.09/2/100= 0.826 W
Hence, 10W bulb glow brighter

494. There are two doors in front of you. One door leads to
heaven and the other door leads to hell. There is a guard in-
front of each door. One guard always tells the truth and the
other guard always lie, but you don’t know which one is
honest and which one is liar. Given that you can only ask one
question from one of them, what would your question be in
order to find the way to heaven?

" If I ask the other Guard about which door leads to heaven, what would he
tell me? ".

The door that the Guard specifies will lead to hell. Other door would lead to
heaven.

This is due to the fact that if you end up asking this question from the Guard
who always tells the truth, he would point you to the door that leads to hell
as he knows that the other guard would lie and would point you to the door
that leads to hell. On the other hand, if you end up asking this question from
the Guard who always lies, he would lie and point you to door to hell.

495. You have one person working for you for exactly seven days.
You have a gold bar to pay him. The gold bar is segmented
into seven connected pieces. You must give the person a piece
of gold at the end of every day. You can make only two cuts
to the gold bar. Where would be these two cuts to allow you
to pay the worker 1/7th gold bar each day?

Make first cut so that you have a part that is1/7th of the total size
(comprising of 1 segment) and make the second cut so that you have a part
with 2/7th of the total size (comprising of 2 segments). Remaining part
would be 4/7th of total size (comprising of 4 segments). Now:

Day 1: Give the worker the first part (1/7th of the gold bar i.e. 1 segment).
Day 2: Give the worker the second part (2/7th of the gold bar i.e. 2
segments) and take back the first (1/7th of the gold bar).

Day 3: Give the worker the first part again (so that he now has 3/7th of the
gold bar).

Day 4: Give the worker the third part (4/7th of the gold bar i.e. 4 segments)
and take back the first and second (3/7th of the gold bar).

Day 5: Give the worker the first part (so that he now has 5/7th of the gold
bar).

Day 6: Give the worker the second part and take back the first (so that he
now has 6/7th of the gold bar).

Day 7: Give the worker the first part again (so that he now has the entire
bar).

496. Four people (say A, B, C and D) need to cross a shaky bridge
at night and they have only one torch with them. It’s
dangerous to cross the bridge without a touch. The bridge
can support only two people at a time. All people take
different times to cross the bridge (A = 1 min, B = 2 mins, C
= 5 mins, and D = 10 mins). What is the shortest time
required for all four of them to cross the bridge?

A and B cross the bridge first with the torch (Time: 2 mins, Total Time: 2
mins)

A leaves B on the other side of the bridge and returns with the torch (Time: 1
min, Total Time: 3 mins)

C and D cross the bridge with the torch (Time: 10 mins, Total Time: 13
mins)

B returns with the torch (Time: 2 mins, Total Time: 15 mins)

Finally, A and B cross to the other side of the bridge again (Time: 2 mins,
Total Time: 17 mins)

497. Find out the next term in the series: F13, S15, T17, T19, S21,
M23, _?
W25
F11: Friday 13th
S13: Sunday 15th
T15: Tuesday 17th
T17: Thursday 19th
S19: Saturday 21th
M21: Monday 23rd
Next date in the series would be 25th and day would be Wednesday. Hence,
the answer would be W25 .

498. Two hundred people line up to board a plane with 200 seats.
First person (say Jack) in the line gets into the plane and
suddenly can’t remember his seat number, and hence he
randomly picks a seat. After that, each person entering the
plane either sits in their assigned seat (if it is available), or if
not, chooses an unoccupied seat randomly. When the 200th
passenger (say Jill) finally enters the plane, what is the
probability that she finds her assigned seat unoccupied?

0.5 (50%)

Let us assume that there are only two seats in the plane. If Jack sits on his
seat, Jill would find her seat unoccupied and if Jack sits on Jill’s seat, Jill
would find her seat occupied. Hence, 50% chances.

Let us now consider all 200 seats. Let’s assume Jack sits on the seat
belonging to 35th person in the line. Persons 2 to 34 will sit on their own
seats, and when person 35 comes in, he can sit either on the seat belonging
to Jack or some random seat. If person 35th sits on Jack’s seat, Jill will find
her seat. Else if the 35th sits on Jill’s seat, Jill won’t find her seat unoccupied

(50% probability). Else if 35th person sits on some other seat at random
(which neither belongs to Jack, nor to Jill), decision would be postponed and
would depend on the person whose seat 35th person would occupy.

So basically, probability is always 50%: just that decision of Jill finding her
seat occupied/unoccupied gets postponed/delayed based upon whose seat
Jack sits on and so on.

499.

3,3 and 8

Two old friends, A and B, meet after a long time.

A: Hi B, How are you?

B: I am good. I got married and now I have three kids.

A: Congrats! How old are your kids?

B: Product of their ages is 72 and the sum of their ages is the
same as your birth date.

A: But I still don’t know.

B: My eldest kid just started taking piano lessons.

A: Oh now I get it.

How old are Bill’s kids?

As the product of the ages of the kids is 72, possible values are:

1
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)

1,2,36

1,3,24

1,4,18

1,6,12

1,8,9

2,218

2,3,12

2,49

2,6,6
3,3,8
3,4,6

Since sum of the ages is equal to birth date, it has to be between 1 to 31.
Now, as A is not able to find their age from this data, it means that there are
two or more sets with same sum. Now sum is same for only two of the above

cases: 2,6,6 and 3,3,8. Since, eldest one is taking piano lessons, answer has
to be 3,3,8 as 2,6,6 consists of two eldest sons (which is not possible).

500. There is a triangle and on it are 3 ants, one on each corner,
and they are free to move along the sides of the triangle.
What is probability that the ants will collide?

It is given that ants can move only along the sides of the triangle in any
direction. Let’s assume that one direction is represented by 1 and another by
0. Since there are 3 sides: eight combinations are possible (2A3). When all
ants are going in same direction, they won’t collide: that is 111 or 000.
Hence, probability of no collision is: 2/8=1/4, and probability of collision is:
6/8=3/4.

8.3 Lateral Thinking

Lateral Thinking puzzles are sort of hybrid between puzzles and stories. In
each puzzle, clues/hints to a specific scenario are given. Puzzle solver needs
to fill in the details to complete the scenario. These puzzles are usually
inexact and may have more than one possible answer. Depending upon the
nature of the puzzle (i.e. completeness of the data given in the puzzle), it’s
usually acceptable for the puzzle solver to ask few questions from the person
asking the puzzle in order to arrive at the solution. Answer to such questions
(asked by puzzle solver), can be given by person hosting the puzzle in only
“yes” or “no”. However, since we don’t have an option of presenting these
puzzles in an interactive manner, we are sharing few puzzles to make sure
that the readers are aware of this category of puzzles. The puzzles mentioned
below have enough data for our readers to reach a logical conclusion.

This category of puzzles teaches a candidate to check his/her assumptions
about any situation. You need to be creative and open-minded to solve these
puzzles.

501. A man lives on the tenth floor of a building. Every day he
takes the elevator to go down to the ground floor to go to
work. When he returns, he takes the elevator to the sixth
floor and walks up the stairs to reach his apartment on the
tenth floor. When there are other people in the lift, he goes to
tenth floor directly. He hates walking, so why does he walk
from sixth floor to tenth floor every day?

Man is a dwarf and hence can’t reach the buttons for 7th, 8th, 9th and 10th
floors (as buttons for these floors are away from his reach)
502. There are six eggs in the basket. Six people each take one of

the eggs. How could it be that one egg is left in the basket?

The last person took the basket with the last egg still inside.

503. There is a flash of light and a man dies. How?
Man is struck by lightning.
504. A hunter aimed his gun carefully and fired. Seconds later, he
realized his mistake. And Minutes later, he was dead.
It was winter timeframe, and the hunter fired the gun near snowy cliff that
started an avalanche.
505. An avid bird watcher sees an unexpected bird. Soon, they

were both dead.

Avid bird watcher is sitting in an aeroplane and sees the bird getting stuck
into the engine of aeroplane, leading to a plane crash.

506. How could a baby fall out of a 27 story building on the
ground and live?

The baby fell out of a ground floor window even though the building has 27
floors.

Chapter 9: Non Technical and Behavioral
Questions

Behavioral interview forms a key part of hiring process. It’s very important
to do well in this section. Having strong technical skills alone won’t suffice
as you are usually expected to work as part of a team. Behavioral skills form
an important part of work culture of any company and hence this section is
usually taken very seriously by recruiters. Performing great in this section
with poor technical skills may not fetch candidate a job, but performing bad
in this section can definitely cost candidate a job.

Answer to questions in this section would be individual specific. There are
no right or wrong answers for these questions. Since answers would be
different for different individuals, it’s not possible for us to provide answers
for these questions. We are providing these questions to help our readers get
familiar with type of questions that may be asked in this round of Interview
process. However, Best answers to these questions would be the ones that
reflect your actual thought process and are truthful. Being open about your
aspirations, strengths and weakness always help. A tip : Try avoiding tailor
made answers and be honest.

507. Tell me something about yourself.
508. What are your strengths and weaknesses?

509. Why do you want to leave your current job (if applicable)?

510. Why do you want to work for this job you are being
interviewed for?

511. What are your short term and long term career goals?

512. Why should we hire you?

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

What kind of work would you want to do if you join us?
How would your present Manager/ Boss describe you?

How do you deal with difficult personalities/peers/
subordinates /seniors?

If you have to pick up one area of your expertise in a non -
technical domain , what would it be?

What’s your favorite programming language? Why?

What all technical area(s)/topic(s) are you MOST
comfortable with?

Give an example of a time you faced a conflict while working
in a team. How did you handle it?

We all make mistakes we wish we could take back. Tell about
a time you wish you had handled a situation differently with
a colleague.

Tell about a time you needed to get information from
someone who wasn’t very responsive. What did you do?

Tell about a time you failed. How did you deal with this
situation?

Tell about a time you were under a lot of pressure. How did
you get through it?

Sometimes it’s not possible to complete everything on the to-
do list. Tell about a time your responsibilities got
overwhelming. What did you do?

525.

526.

527.

528.

529.

530.

531.

532.

533.

534.

535.

536.

537.

538.

Give an example of a time when you were able to successfully
persuade someone to see things your way at work.

Tell about your proudest professional accomplishment.
Describe a time when you saw some problem and took the
initiative to correct it rather than waiting for someone else to
do it.

Are you a leader or a follower?

If I call your boss right now and ask him about an area you
could improve on, what would he say?

Can you explain this gap in your employment/educational
history? (If there is a gap)

Describe your typical day at work.
Tell about a time when you disagreed with your boss.
Describe your work-style?

Tell about a time when you did something wrong. How did
you handle it?

Have you ever had a difficulty with a supervisor? How did
you resolve the conflict?

If there were two things you could have changed about your
present job, what would those be?

What do you like the most about your present job?

Describe a situation when your work was criticized . How
did you handle it?

539. Do you have any plans for higher/further studies?

540. Where all (What all organizations) have you applied for a
job in addition to our organization ? Have you been
interviewed somewhere else also?

Closing Remarks

So here we are. We thank you for reading this book. We hope that you would
have benefitted from reading this book and it would have helped you test,
brush-up, and hone fundamental concepts related to Digital VLSI
Verification. To-reiterate, a question-bank can never be 100% complete,
however big it may be. This book is our sincere effort to cover as many
concepts as we could, through limited set of 500+ questions but covering all
concepts that will help you answer more related questions.

Feedback is one of the best way to let us know your thoughts on this book.
While a positive feedback from you would: give us a sense of satisfaction,
help us know what we have done right, encourage us to continue in the same
direction, a negative/developmental feedback: would let us know what we
could have done better and help us course-correct in future. Please do leave
your reviews and ratings that reflect your honest opinion on this book.

If you liked this book, we request you to refer it to your juniors, peers,
fellow friends, seniors and spread a word about it, so that others could also
benefit from it.

Also, don't forget to claim your free gift (Subscribe and Download Your
Free Copy Here). You can stay in touch with us through different mediums
as mentioned in the beginning of this book.

Hopefully, you are now ready for your upcoming interview.

https://my.sendinblue.com/users/subscribe/js_id/2ddxq/id/1

All the Best!
Ramdas M and Robin Garg

	About the Authors
	Preface
	A Career in ASIC/SOC Design Verification
	Introduction
	Preparing for an Interview
	Interview Process and Latest Trends
	How should a Candidate prepare for an Interview?
	General Tips/Best Known Methods

	What Leaders look for while Interviewing Candidates?
	Interview of First Verification Leader
	Interview of Second Verification Leader
	Interview of Third Verification Leader
	Interview of Fourth Verification Leader

	Chapter 1: Digital Logic Design
	1.1 Number Systems, Arithmetic and Codes
	1.2 Basic Gates
	1.3 Combinational Logic Circuits
	1.4 Sequential Circuits and State Machines

	1.5 Other Miscellaneous Digital Design Questions
	Chapter 2: Computer Architecture
	Chapter 3: Programming Basics
	3.1 Basic Programming Concepts
	3.2 Object Oriented Programming Concepts
	3.3 Programming questions
	3.3.1 UNIX/Linux
	3.3.2 Programming in C/C++
	3.3.3 Programming in PERL

	Chapter 4: Hardware Description Languages
	4.1 Verilog
	4.2 SystemVerilog

	Chapter 5: Fundamentals of Verification
	Chapter 6: Verification Methodologies
	6.1 UVM (Universal Verification Methodology)
	6.2 Formal Verification
	6.3 Power and Clocking
	6.4 Coverage
	6.5 Assertions

	Chapter 7: Version Control Systems
	7.1 General
	7.2 CVS
	7.3 GIT
	7.4 SVN

	Chapter 8: Logical Reasoning/Puzzles
	8.1 Related to Digital Logic
	8.2 General Reasoning
	8.3 Lateral Thinking

	Chapter 9: Non Technical and Behavioral Questions
	Closing Remarks

